9.從裝有2個(gè)紅球和2個(gè)白球的袋內(nèi)任取兩球,下列每對(duì)事件中是互斥事件的是( 。
A.至少有一個(gè)白球;都是白球B.恰好有一個(gè)白球;恰好有兩個(gè)白球
C.至少有一個(gè)白球;至少有一個(gè)紅球D.至多有一個(gè)白球;都是紅球

分析 利用互斥事件的定義求解.

解答 解:從裝有2個(gè)紅球和2個(gè)白球的袋內(nèi)任取兩球,
在A中,至少有一個(gè)白球和都是白球兩個(gè)事件能同時(shí)發(fā)生,不是互斥事件,故A錯(cuò)誤;
在B中,恰好有一個(gè)白球和恰好有兩個(gè)白球兩個(gè)事件不能同時(shí)發(fā)生,是互斥事件,故B正確;
在C中,至少有一個(gè)白球和至少有一個(gè)紅球能夠同時(shí)發(fā)生,不是互斥事件,故C錯(cuò)誤;
在D中,至多有一個(gè)白球和都是紅球兩個(gè)事件能夠同時(shí)發(fā)生,不是互斥事件,故D錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 本題考查互斥事件的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件的定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),若橢圓C:$\frac{{x}^{2}}{a}$+y2=1存在點(diǎn)P使|PM|-|PN|=2$\sqrt{2}$,則a的取值范圍是( 。
A.(0,1)B.(1,+∞)C.[2,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖給出的是計(jì)算$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2016}$的值的一個(gè)程序框圖,則圖中判斷框內(nèi)(1)處和執(zhí)行框中的(2)處應(yīng)填的語句是(  )
A.i>1008,n=n+2B.i≤1008,n=n+2C.i>2016,n=n+1D.i>2016,n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=1,公差d>0,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng)
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式
(Ⅱ)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)Z滿足Z•(1+i)=2i,則Z是( 。
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{\sqrt{2-x}}{1-lo{g}_{2}x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,2]B.(0,2)C.(-2,2)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線x2=4y的焦點(diǎn)F的坐標(biāo)為(0,1),若M是拋物線上一點(diǎn),|MF|=4,O為坐標(biāo)原點(diǎn),則∠MFO=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù)$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的圖象關(guān)于y軸對(duì)稱,則φ的值可以為(  )
A.$-\frac{7π}{12}$B.$-\frac{5π}{12}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的不等式(mx-1)(x-2)>0的解集為{x|$\frac{1}{m}$<x<2},則m的取值范圍是( 。
A.m>0B.0<m<2C.m>$\frac{1}{2}$D.m<0

查看答案和解析>>

同步練習(xí)冊(cè)答案