分析 (Ⅰ)把sinA+cosA=$\frac{1}{5}$兩邊平方,根據(jù)同角的平方關系與二倍角公式即可求出sin2A的值;
(Ⅱ)根據(jù)二倍角公式與三角形內角和定理,即可判斷A是鈍角,△ABC是鈍角三角形;
(Ⅲ)根據(jù)同角的三角函數(shù)關系,求出sinA與cosA,即可求tanA的值.
解答 解:(Ⅰ)△ABC中,sinA+cosA=$\frac{1}{5}$,
∴${(sinA+cosA)^2}={sin^2}A+2sinAcosA+{cos^2}A=1+sin2A=\frac{1}{25}$,
解得$sin2A=-\frac{24}{25}$;…(3分)
(Ⅱ)△ABC中,$sin2A=2sinAcosA=-\frac{24}{25}<0$,
且sinA>0,∴cosA<0,A是鈍角,
∴△ABC是鈍角三角形;…(7分)
(Ⅲ)${(sinA-cosA)^2}=1-sin2A=\frac{49}{25}$,
又知sinA-cosA>0,
∴$sinA-cosA=\frac{7}{5}$,…(10分)
聯(lián)立$sinA+cosA=\frac{1}{5}$,
解得$sinA=\frac{4}{5},cosA=-\frac{3}{5}$,
∴$tanA=-\frac{4}{3}$.…(13分)
點評 本題考查了同角的三角函數(shù)關系應用問題,也考查了二倍角公式的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4949 | B. | 4950 | C. | 4951 | D. | 4952 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(3\sqrt{2},\frac{3π}{4})$ | B. | $(-3\sqrt{2},\frac{5π}{4})$ | C. | $(3,\frac{5π}{4})$ | D. | $(-3,\frac{3π}{4})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com