4.我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強,幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間r(小時)之間近似滿足如圖所示的曲線
(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于$\frac{1}{9}$微克時,治療有效,求服藥一次后治療有效的時間是多長?

分析 (1)利用函數(shù)的圖象,求出函數(shù)的解析式即可.
(2)利用分段函數(shù)列出不等式,求解即可.

解答 解:(1)由題意,設(shè):f(t)=$\left\{\begin{array}{l}{kt,t∈[0,1]}\\{({\frac{1}{3})}^{t-a},t>1}\end{array}\right.$,當(dāng)t=1時,由y=9,可得k=9,由$({\frac{1}{3})}^{1-a}=9$,可得a=3,
則f(t)=$\left\{\begin{array}{l}{9t,t∈[0,1]}\\{(\frac{1}{3})^{t-3},t>1}\end{array}\right.$,
(2)由每毫升血液中含藥量不少于$\frac{1}{9}$微克時,治療有效,即y≥$\frac{1}{9}$,得$\left\{\begin{array}{l}{0≤t≤1}\\{9t≥\frac{1}{9}}\end{array}\right.$,或$\left\{\begin{array}{l}{t>1}\\{({\frac{1}{3})}^{t-3}≥\frac{1}{9}}\end{array}\right.$,
解得:$\frac{1}{81}≤t≤5$.

點評 本題考查分段函數(shù)的解析式的求法,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)為奇函數(shù),且f($\frac{π}{4}$)=0,其中a∈R,θ∈(0,π),f(x)=(a+2cos2x)cos(2x+θ).
(1)求a,θ的值;
(2)若f($\frac{a}{4}$)=-$\frac{2}{5}$,α∈($\frac{π}{2}$,π),求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益和投資的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大的收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若對任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,則a的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,2).
(1)求(2$\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$);
(2)設(shè)$\overrightarrow{c}$=(-3,λ),若$\overrightarrow{c}$與$\overrightarrow{a}$夾角為鈍角,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果f(x)在[-5,5]上是奇函數(shù),且f(3)<f(1),則( 。
A.f(-1)<f(-3)B.f(0)>f(1)C.f(-1)<f(1)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關(guān)注環(huán)境保護(hù)問題.
當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時,空氣質(zhì)量級別為一級,空氣質(zhì)量狀況屬于優(yōu);
當(dāng)空氣污染指數(shù)為50~100時,空氣質(zhì)量級別為二級,空氣質(zhì)量狀況屬于良;
當(dāng)空氣污染指數(shù)為100~150時,空氣質(zhì)量級別為三級,空氣質(zhì)量狀況屬于輕度污染;
當(dāng)空氣污染指數(shù)為150~200時,空氣質(zhì)量級別為四級,空氣質(zhì)量狀況屬于中度污染;
當(dāng)空氣污染指數(shù)為200~300時,空氣質(zhì)量級別為五級,空氣質(zhì)量狀況屬于重度污染;
當(dāng)空氣污染指數(shù)為300以上時,空氣質(zhì)量級別為六級,空氣質(zhì)量狀況屬于嚴(yán)重污染.
2015年12月某日某省x個監(jiān)測點數(shù)據(jù)統(tǒng)計如下:
空氣污染指數(shù)(單位:μg/m3[0,50](50,100](100,150](150,200]
監(jiān)測點個數(shù)1540y10
(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)若A市共有5個監(jiān)測點,其中有3個監(jiān)測點為輕度污染,2個監(jiān)測點為良,從中任意選取2個監(jiān)測點,事件A“其中至少有一個為良”發(fā)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知tanα=2,則$\frac{sinα+2cosα}{sinα-cosα}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=$\sqrt{x(2-x)}$的定義域為[0,2],則函數(shù)g(x)=$\frac{f(2x)}{x-1}$的定義域為[0,1).

查看答案和解析>>

同步練習(xí)冊答案