分析 (1)設(shè)正項等差數(shù)列{an}的公差為d,由等比數(shù)列的性質(zhì),運用等差數(shù)列的通項公式,列方程解得d=2,即可得到所求通項;
(2)運用等差數(shù)列的求和公式,以及$\frac{2}{{S}_{n}+2}$=$\frac{2}{{n}^{2}+3n+2}$=$\frac{2}{(n+1)(n+2)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),由裂項相消求和和不等式的性質(zhì),即可得證.
解答 解:(1)設(shè)正項等差數(shù)列{an}的公差為d,
由a1=4,且a2,a3+4,2a6-4成等比數(shù)列,
可得(a3+4)2=a2(2a6-4),
即為(8+2d)2=(4+d)(4+10d),
解得d=2(-4舍去),
即有an=4+2(n-1)=2n+2;
(2)證明:前n項和為Sn=$\frac{1}{2}$n(2n+6)=n(n+3),
即有$\frac{2}{{S}_{n}+2}$=$\frac{2}{{n}^{2}+3n+2}$=$\frac{2}{(n+1)(n+2)}$
=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),
則$\frac{2}{{S}_{1}+2}$+$\frac{2}{{S}_{2}+2}$+…+$\frac{2}{{S}_{n}+2}$=2($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=2($\frac{1}{2}$-$\frac{1}{n+2}$)=1-$\frac{2}{n+2}$<1.
故$\frac{2}{{S}_{1}+2}$+$\frac{2}{{S}_{2}+2}$+…+$\frac{2}{{S}_{n}+2}$<1.
點評 本題考查等差數(shù)列的通項公式和求和公式的運用以及等比數(shù)列的性質(zhì),考查數(shù)列的求和方法:裂項相消求和,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ③④ | B. | ②④ | C. | ①③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $g(x)=2sin(2x-\frac{π}{4})$ | B. | $g(x)=2sin(2x-\frac{π}{8})$ | C. | $g(x)=2sin(\frac{1}{2}x-\frac{π}{4})$ | D. | $g(x)=2sin(\frac{1}{2}x-\frac{π}{16})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com