分析 判斷BO⊥面PAC,可得∠BPO為直線PB與平面PAC所成的角,利用正弦函數(shù)即可求得PB,求出四棱錐P-ABCD的外接球的半徑,即可求出球的表面積.
解答 解:連接AC與BD交于O,連接OP,則
∵BO⊥AC,BO⊥PA,AC∩PA=A
∴BO⊥面PAC,
∴∠BPO為PB與平面PAC所成的角,
∵AB=2,
∴OB=$\sqrt{2}$,
∵PB與平面PAC所成的角的正弦值為$\frac{\sqrt{10}}{10}$,
∴$\frac{\sqrt{2}}{PB}$=$\frac{\sqrt{10}}{10}$,
∴PB=2$\sqrt{5}$,
∴PA=$\sqrt{20-4}$=4,
∴四棱錐P-ABCD的外接球的直徑為$\sqrt{4+4+16}$=$\sqrt{24}$,
∴四棱錐P-ABCD的外接球的半徑為$\frac{\sqrt{24}}{2}$,
∴球的表面積為4πR2=24π.
故答案為:24π.
點評 本題考查球的表面積,考查學生的計算能力,考查線面角,正確求出四棱錐P-ABCD的外接球的半徑是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $-\frac{11}{3}$ | D. | $-\frac{3}{11}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com