1.若函數(shù)f(x)滿足f(xy)=f(x)+f(y),且f(2)=m,f(3)=n,則f(36)=( 。
A.6mnB.m3+n2C.2m+2nD.3m+2n

分析 利用賦值法f(36)=2f(6)=2[f(2)+f(3)],把已知代入即可求解.

解答 解:∵f(xy)=f(x)+f(y),f(2)=m,f(3)=n,
∴f(36)=2f(6)=2[f(2)+f(3)]=2(m+n)
故選:C.

點(diǎn)評 本題主要考查了抽象函數(shù)中利用賦值求解函數(shù)值,屬于基礎(chǔ)試題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=loga$\frac{1-mx}{1+x}$(a>0,且a≠1,m≠-1)是定義在區(qū)間(-1,1)上的奇函數(shù),
(1)求f(0)的值和實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并說明理由;
(3)若f($\frac{1}{2}$)>0且f(b-2)+f(2b-2)>0成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-{x}^{2},x∈[-1,2]}\\{x-4,x∈(2,5]}\end{array}\right.$
(Ⅰ)在有圖給定的直角坐標(biāo)系內(nèi)畫出f(x)的草圖,并寫出f(x)的單調(diào)區(qū)間;
(Ⅱ)求滿足f(x)<0的x的取值的集合;
(Ⅲ)若方程f(x)=k有兩個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,則向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知角α的終邊在第二象限,且與單位圓交于點(diǎn)P(m,$\frac{\sqrt{15}}{4}$).
(1)求實(shí)數(shù)m的值;
(2)求$\frac{\sqrt{2}sin(α+\frac{π}{4})}{\sqrt{15}sin(5π-α)-sin(α-\frac{3π}{2})+1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在邊長為6的正三角形ABC中,設(shè)$\overrightarrow{BC}$=3$\overrightarrow{BD}$,$\overrightarrow{CA}$=2$\overrightarrow{CE}$,則$\overrightarrow{AD}$•$\overrightarrow{BE}$=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.a(chǎn),b是任意實(shí)數(shù),且a>b,則下列結(jié)論正確的是( 。
A.a2>b2B.$\frac{a}$<1C.lg(a-b)>lg$\frac{1}{a-b}$D.4-a<4-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)$f(x)=cos(2πx+\frac{π}{3})$,若對任意x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)的定義域?yàn)?[{-\frac{1}{2},\frac{1}{2}}]$,求函數(shù)$y=f({{x^2}-x-\frac{1}{2}})$的定義域.

查看答案和解析>>

同步練習(xí)冊答案