19.已知集合M={x|-$\sqrt{5}$<x<$\sqrt{3}$,x∈Z},則下列集合是集合M的子集的為( 。
A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤$\sqrt{3}$,x∈N}

分析 先用列舉法表示出集合M,再利用子集的定義求解.

解答 解:∵集合M={x|-$\sqrt{5}$<x<$\sqrt{3}$,x∈Z}={-2,-1,0,1},
∴在A中:P={-3,0,1}不是集合M的子集,故A錯(cuò)誤;
在B中:Q={-1,0,1,2}不是集合M的子集,故B錯(cuò)誤;
在C中:R={y|-π<y<-1,y∈Z}={-3,-2}不是集合M的子集,故C錯(cuò)誤;
在D中:S={x||x|≤$\sqrt{3}$,x∈N}={0,1}是集合M的子集,故D正確.
故選:D.

點(diǎn)評(píng) 本題考查集合的子集的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意子集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓(x-1)2+(y+1)2=2與圓x2+y2=1的公共弦所在直線方程為2x-2y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:{x||x-1|<c(c>0)},命題q:{x||x-3|>4},且¬p是q成立的充分且不必要條件,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α,β,λ是一個(gè)三角形的三個(gè)內(nèi)角,有下列式子:
①sin(α+β)-sinλ
②cos(α+β)+cosλ
③cos(α+β)-cosλ
④tan(α+β)-tanλ
⑤tan(α+β)+tanλ
⑥tan$\frac{α+β}{2}$tan$\frac{λ}{2}$.
其中,值為常數(shù)的式子的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.記函數(shù)f(x)=$\sqrt{2-\frac{x+3}{x+1}}$的定義域?yàn)锳,g(x)=$\sqrt{(x-a-1)(2a-x)}$(a<1)的定義域?yàn)锽.
(1)求A;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.關(guān)于x的不等式a•4x+2x+1>0恒成立,常數(shù)a的取值范圍[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+alnx.
(Ⅰ)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若g(x)=f(x)+$\frac{2}{x}$在[1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)、左焦點(diǎn)分別為A、F,點(diǎn)B(0,-b),若|$\overrightarrow{BA}+\overrightarrow{BF}|=|\overrightarrow{BA}-\overrightarrow{BF|}$,則雙曲線的離心率值為$\frac{{\sqrt{5}+1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,a>b且sin2B+sin2C=tan$\frac{A}{2}$(cos2B+cos2C).
(I)求角A的大;
(Ⅱ)若a=4,求b+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案