19.命題“?x∈R,x2≠x”的否定是(  )
A.?x0∈R,x${\;}_{0}^{2}$=x0B.?x∈R,x2=xC.?x0∉R,x${\;}_{0}^{2}$≠x0D.?x∉R,x2≠x

分析 利用全稱命題的否定是特稱命題推出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以,命題“?x∈R,x2≠x”的否定是?x0∈R,x${\;}_{0}^{2}$=x0
故選:A.

點(diǎn)評 本題考查命題的否定,全稱命題與特稱命題否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,a2=b2+c,acosB=4bcosA,則c=$\frac{5}{3}$,;若a=3,則△ABC是銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等比數(shù)列{an}中,對任意n∈N*,都有an=an+1+an+2,則公比q=$\frac{-1±\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線y=$\frac{1}{3}{x^3}+\frac{4}{3}$,
(1)求f′(5)的值
(2)求曲線在點(diǎn)P(2,4)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$\frac{2+i}{1-i}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列說法正確的是①②(填入你認(rèn)為所有正確的序號)
①$\frac{5π}{3}$的正弦線與正切線的方向相同;
②若函數(shù)f(x)=cosωx(ω>0)在$x∈[-\frac{π}{3},\frac{π}{4}]$上的最大、最小值之和為0,則ω的最小值為3;
③在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,則△ABC是鈍角三角形;
④定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+5),且f(3)=0,則在(0,10)內(nèi)f(x)至少有7個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(2-i)=5i,則z等于-1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex+ax+b(a,b∈R,e是自然對數(shù)的底數(shù))在點(diǎn)(0,1)處的切線與x軸平行.
(Ⅰ)求a,b的值;
(Ⅱ)若對一切x∈R,關(guān)于x的不等式f(x)≥(m-1)x+n恒成立,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.命題p:$\frac{x^2}{a-2}-\frac{y^2}{6-a}=1$是雙曲線的方程;命題q:函數(shù)f(x)=(5-a)x在R上為增函數(shù).若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案