分析 求出原函數(shù)的定義域,求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的零點對定義域分段,然后根據(jù)導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號得到原函數(shù)的單調(diào)性.
解答 證明:函數(shù)y=$\frac{lnx}{x}$的定義域為(0,+∞),
y′=$\frac{1-lnx}{{x}^{2}}$,由y′=0,得x=e.
當(dāng)x∈(0,e)時,y′>0,函數(shù)為增函數(shù);
當(dāng)x∈(e,+∞)時,y′<0,函數(shù)為減函數(shù).
故答案為:(e,+∞).
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,0) | B. | (-$\frac{1}{2}$,0) | C. | (0,$\frac{1}{8}$) | D. | (0,-$\frac{1}{8}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 恒小于0 | B. | 恒大于0 | C. | 可能等于0 | D. | 可正也可負(fù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$πR2 | B. | $\frac{9}{2}$πR2 | C. | $\frac{9}{4}$πR2 | D. | $\frac{9}{8}$πR2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com