14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,O為坐標(biāo)原點(diǎn),若|OP|=$\frac{1}{2}$|F1F2|,且|PF1|•|PF2|=a2,則該橢圓的離心率為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

分析 由橢圓的定義可得,|PF1|+|PF2|=2a,又|PF1|•|PF2|=a2,可得|PF1|=|PF2|=a,即P為橢圓的短軸的端點(diǎn),由條件可得b=c,計算即可得到橢圓的離心率.

解答 解:由橢圓的定義可得,|PF1|+|PF2|=2a,
又|PF1|•|PF2|=a2,
可得|PF1|=|PF2|=a,即P為橢圓的短軸的端點(diǎn),
|OP|=b,且|OP|=$\frac{1}{2}$|F1F2|=c,
即有c=b=$\sqrt{{a}^{2}-{c}^{2}}$,
即為a=$\sqrt{2}$c,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$.
故選:C.

點(diǎn)評 本題考查橢圓的離心率的求法,注意運(yùn)用橢圓的定義,以及a,b,c的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.東莞某家具生產(chǎn)廠家根據(jù)市場調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按40個工時計算)生產(chǎn)書桌、書柜、電腦椅共120張,且書桌至少生產(chǎn)20張.已知生產(chǎn)這些家具每張所需工時和每張產(chǎn)值如表:
家具名稱書桌書柜電腦椅
工  時$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{4}$
產(chǎn)值(千元)432
問每周應(yīng)生產(chǎn)書桌、書柜、電腦椅各多少張,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知0<a<1<b,求logab+logba的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知△ABC各頂點(diǎn)的坐標(biāo)分別為(xA,yA),(xB,yB),(xC,yC),點(diǎn)E,F(xiàn)分別在AC、AB上,AE=$\frac{1}{3}$AC,AF=$\frac{1}{4}$AB,BE、CF交于點(diǎn)D,求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$G:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的長軸長為$2\sqrt{2}$,離心率$e=\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)過橢圓G的上頂點(diǎn)A的直線l與橢圓G的另一個交點(diǎn)為B,與x軸交于點(diǎn)C,線段AB的中點(diǎn)為D,線段AB的垂直平分線分別交x軸、y軸于P、Q兩點(diǎn).問:是否存在直線l使△PDC與△POQ的面積相等(O為坐標(biāo)原點(diǎn))?若存在,求出所有滿足條件的直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=AD=$\frac{1}{2}$CD=1.點(diǎn)P為線段C1D1的中點(diǎn).
(Ⅰ)求證:AP∥平面BDC1;
(Ⅱ)求證:平面BCC1⊥平面BDC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線l:$\left\{\begin{array}{l}{x=at}\\{y=1-2t}\end{array}\right.$(t為參數(shù)),圓C:ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$)(極軸與x軸的非負(fù)半軸重合,且單位長度相同),若圓C上至少有三個點(diǎn)到直線l的距離恰為$\frac{\sqrt{2}}{2}$,則實(shí)數(shù)a的取值范圍為[$\frac{2}{7}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.運(yùn)行如圖所示的程序框圖,則輸出的數(shù)是7的倍數(shù)的概率為(  )
A.$\frac{4}{25}$B.$\frac{8}{49}$C.$\frac{7}{50}$D.$\frac{14}{99}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對數(shù)不等式(1+log3x)(2-log3x)>0的解集是($\frac{1}{3}$,9).

查看答案和解析>>

同步練習(xí)冊答案