6.直線l:$\left\{\begin{array}{l}{x=at}\\{y=1-2t}\end{array}\right.$(t為參數(shù)),圓C:ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$)(極軸與x軸的非負半軸重合,且單位長度相同),若圓C上至少有三個點到直線l的距離恰為$\frac{\sqrt{2}}{2}$,則實數(shù)a的取值范圍為[$\frac{2}{7}$,2].

分析 求出直線l與圓C的普通方程得出圓C的半徑,利用點到直線的距離公式列出不等式解出a的范圍.

解答 解:直線l的普通方程為2x+ay-a=0.
∵ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),∴ρ2=2ρcosθ-2ρsinθ,
∴圓C的直角坐標方程為:x2+y2=2x-2y,即(x-1)2+(y+1)2=2.
∴圓C的圓心為C(1,-1),圓C的半徑r=$\sqrt{2}$.
∵圓C上至少有三個點到直線l的距離恰為$\frac{\sqrt{2}}{2}$,
∴圓心C到直線l的距離0≤d≤$\frac{\sqrt{2}}{2}$.即0≤$\frac{|2-a-a|}{\sqrt{4+{a}^{2}}}$≤$\frac{\sqrt{2}}{2}$.
解得$\frac{2}{7}≤a≤2$.
故答案為:[$\frac{2}{7}$,2].

點評 本題考查了直線與圓的位置關(guān)系,參數(shù)方程,極坐標方程與普通方程的轉(zhuǎn)化,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.若函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值與最小值的差為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知:z1,z2∈C,求證:($\overline{\frac{{z}_{1}}{{z}_{2}}}$)=$\frac{\overline{{z}_{1}}}{\overline{{z}_{2}}}$(z2≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,點P在橢圓上,O為坐標原點,若|OP|=$\frac{1}{2}$|F1F2|,且|PF1|•|PF2|=a2,則該橢圓的離心率為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(x-1)}^2},x≥0}\\{|{{e^x}-2}|,x<0}\end{array}}\right.$則f(-1)=2-$\frac{1}{e}$,若方程f(x)=m有兩個不同的實數(shù)根,則m的取值范圍為(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)點N在CE上,EC=2,F(xiàn)D=3,當CN為何值時,MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.運行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A.e2016-e2015B.e2017-e2016C.e2015-1D.e2016-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列命題錯誤的是( 。
A.“a>b”是“l(fā)og2a>log2b”的必要不充分條件
B.命題p:?n∈N,n2>2n,則¬p:?x∈N,n2≤2n
C.函數(shù)f(x)=x-sinx既是奇函數(shù)又是增函數(shù)
D.方程Ax2+By2=1表示橢圓的充要條件是A>O,B>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)橢圓E的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為$\frac{1}{4}$.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x+2)2+(y-1)2=$\frac{15}{2}$的一條直徑,若橢圓E經(jīng)過P,Q兩點,求橢圓E的方程.

查看答案和解析>>

同步練習冊答案