18.已知函數(shù)f(x)=2f′(1)lnx-x,則f(x)的解析式為f(x)=2lnx-x.

分析 首先,求解導(dǎo)數(shù),然后,令x=1,得到f′(1)=2f′(1)-1,從而求解f′(1)=1,最后,得到所求函數(shù)的解析式.

解答 解:∵f(x)=2f′(1)lnx-x,
∴f′(x)=2f′(1)$\frac{1}{x}$-1,
令x=1,
∴f′(1)=2f′(1)-1,
∴f′(1)=1,
∴f(x)=2lnx-x,
故答案為:2lnx-x.

點(diǎn)評(píng) 本題重點(diǎn)考查了導(dǎo)數(shù)的基本計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知橢圓C1:$\left\{\begin{array}{l}{x=m+2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ為參數(shù))及拋物線C2:y2=6(x-$\frac{3}{2}$),當(dāng)C1∩C2≠∅時(shí),則m的取值范圍為[-$\frac{1}{2}$,$\frac{7}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=x2-x-2,x∈[-5,5],在定義域內(nèi)任取一點(diǎn)x0,使f(x0)>0的概率是( 。
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在100$\sqrt{3}$m高的山頂上,測(cè)得山下一塔頂與塔底的俯角分別是30°、60°,則塔高為(  )
A.$\frac{400}{3}$mB.$\frac{400\sqrt{3}}{3}$mC.$\frac{200\sqrt{3}}{3}$mD.$\frac{200}{3}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且csinB=$\sqrt{3}$bcosC=3.
(1)求角C;
(2)若△ABC的面積為9$\sqrt{3}$,求邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓的中心在原點(diǎn),離心率為$\frac{1}{2}$,一個(gè)焦點(diǎn)是F(-1,0).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)Q是橢圓上的一點(diǎn),過(guò)點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,且$\overrightarrow{MQ}$=2$\overrightarrow{QF}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知遞增等比數(shù)列{an},滿足a1=1,且a2a4-2a3a5+a4a6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an+$\frac{1}{2}$,求數(shù)列{an2•bn}的前n項(xiàng)和Sn;
(3)在(2)的條件下,令cn=$\frac{1}{_{n}_{n+1}_{n+2}}$,{cn}的前n項(xiàng)和為Tn,若Tn>λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.以A(3,2),B(1,4)所連線段為直徑的圓的方程是(x-2)2+(y-3)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=2ax3+x2+2x+a.
(1)當(dāng)a=0時(shí),求函數(shù)的零點(diǎn);
(2)證明對(duì)所有實(shí)數(shù)a,函數(shù)在區(qū)間(-1,1)上總有零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案