3.已知橢圓的中心在原點(diǎn),離心率為$\frac{1}{2}$,一個(gè)焦點(diǎn)是F(-1,0).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)Q是橢圓上的一點(diǎn),過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,且$\overrightarrow{MQ}$=2$\overrightarrow{QF}$,求直線l的斜率.

分析 (1)由題意的離心率公式和a,b,c的關(guān)系,可得a,b,進(jìn)而得到橢圓方程;
(2)設(shè)Q(x0,y0),F(xiàn)(-1,0),設(shè)l:y=k(x+1),M(0,k),運(yùn)用向量共線的坐標(biāo)表示,求得Q的坐標(biāo),代入橢圓方程,計(jì)算即可得到k的值.

解答 解:(1)由題意:$c=1,\frac{c}{a}=\frac{1}{2}⇒a=2,b=\sqrt{3}$,
所以橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)設(shè)Q(x0,y0),F(xiàn)(-1,0),
設(shè)l:y=k(x+1),M(0,k),
因?yàn)?\overrightarrow{MQ}$=2$\overrightarrow{QF}$,即有(x0,y0-k)=2(-1-x0,-y0),
得$\left\{\begin{array}{l}{x_0}=-\frac{2}{3}\\{y_0}=\frac{k}{3}\end{array}\right.$,所以$Q(-\frac{2}{3},\frac{k}{3})$,
代入橢圓方程可得,$\frac{{\frac{4}{9}}}{4}+\frac{{\frac{k^2}{9}}}{3}=1⇒{k^2}=24⇒k=±2\sqrt{6}$.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式,同時(shí)考查直線的斜率的求法,注意直線方程和向量共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足${\overrightarrow{a}}^{2}$=1,${\overrightarrow}^{2}$=2,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.60°C.45°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.變式訓(xùn)練:已知函數(shù)f(x)=ex-$\frac{2}{x}$+1.求證:
(1)函數(shù)f(x)在(0,+∞)上為增函數(shù);
(2)方程f(x)=0沒有負(fù)實(shí)數(shù)限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解不等式:x2+(1-a)x-a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=2f′(1)lnx-x,則f(x)的解析式為f(x)=2lnx-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某游藝場(chǎng)每天的盈利額y元與售出的門票數(shù)x張之間的關(guān)系如圖所示,試問盈利額為750元時(shí),當(dāng)天售出的門票數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等差數(shù)列{an}前n項(xiàng)和為Sn,已知f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,且f(a2-2)=sin$\frac{2014π}{3}$,f(a2014-2)=cos$\frac{2015π}{6}$,則S2015=4030.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.點(diǎn)M(x,y)在直線y=-2x+8上,當(dāng)x∈[2,5]時(shí),則$\frac{y+1}{x+1}$的取值范圍是[-$\frac{1}{6}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用符號(hào)語言表示下列語句.
(1)點(diǎn)A在平面α內(nèi),但在平面β外;
(2)直線α經(jīng)過平面α外一點(diǎn)M;
(3)直線a在平面α內(nèi),又在平面β內(nèi),即平面α和β相交于直線a.

查看答案和解析>>

同步練習(xí)冊(cè)答案