18.如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.

分析 幾何體為圓臺(tái)挖去一個(gè)圓錐,求出圓臺(tái)和圓錐的底面半徑,高和母線,代入面積公式和體積公式計(jì)算即可.

解答 解:作CE⊥AB于E,作DF⊥CE于F,
則AE=AD=2,CE=4,BE=3,∴BC=5,
四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體為圓臺(tái)挖去一個(gè)圓錐,
其中,圓臺(tái)的上下底面半徑為r1=2,r2=5,高為4,母線l=5,
圓錐的底面半徑為2,高為2,母線l′=2$\sqrt{2}$,
∴幾何體的表面積S=25π+π×2×5+π×5×5+$π×2×2\sqrt{2}$=60π+4$\sqrt{2}$π.
幾何體的體積V=$\frac{1}{3}$(25π+4π+$\sqrt{25π•4π}$)×4-$\frac{1}{3}$×4π×2=$\frac{148π}{3}$.

點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)體的結(jié)構(gòu)特征,面積和體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某風(fēng)景區(qū)出售旅游年卡,每張144元,使用規(guī)定:不記名,每卡每次只限1人,每天只限一次,某公司有48名職工,公司打算組織員工分組分批集體旅游,除需購買若干張年卡外,每次還需包一輛汽車(最多乘48人)每次包車費(fèi)54元,若使每位員工游玩8次.
(1)如果買16張卡,那么游玩8次,每位員工需交多少錢?
(2)買多少張卡最合算(即員工交錢最少),每位員工需交多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{2}$-klnx,k>0,求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若a=1,sinA=$\frac{1}{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=
3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(z+2i)(3+i)=7-i,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{\sqrt{x+2}}{2x-1}$的定義域?yàn)閧x|x≥-2且x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)集合A={x|4-x2>0},B={x|y=lg(-x2+2x+3)}.
(Ⅰ)求集合A∩B;
(Ⅱ)若不等式2x2+ax+b<0的解集為B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l之方程為$\sqrt{3}$x+y+1=0,則直線的傾斜角為( 。
A.120°B.150°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列判斷,正確的是( 。
A.平行于同一直線的兩直線平行
B.垂直于同一直線的兩直線平行
C.平行于同一平面的兩平面不一定平行
D.垂直于同一平面的兩平面平行

查看答案和解析>>

同步練習(xí)冊(cè)答案