16.若tanx<0,則(  )
A.sinx<0B.cosx<0C.sin2x<0D.cos2x<0

分析 根據(jù)正切函數(shù)確定角的象限,結(jié)合三角函數(shù)的符號(hào)進(jìn)行判斷即可.

解答 解:∵tanx<0,
∴x位于第二或第四象限,
若x位于第二象限,則sinx>0,cosx<0,此時(shí)sin2x=2sinxcosx<0,
若x位于第四象限,則sinx<0,cosx>0,此時(shí)sin2x=2sinxcosx<0,
綜上sin2x<0,
故選:C.

點(diǎn)評(píng) 本題主要考查三角函數(shù)符號(hào)的判斷,注意要進(jìn)行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{si{n}^{4}x+co{s}^{4}x}{sin(\frac{π}{2}+x)sin(\frac{π}{2}-x)}$.
(1)判斷函數(shù)的奇偶性;
(2)若f(a)=$\frac{5}{2}$,且a∈(0,$\frac{π}{2}$),求a得值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x-1>lnx,命題q:函數(shù)y=ax+a-x(a>1)在R上為減函數(shù),則 ( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(-q)是真命題D.命題p∨(-q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x2-ax與y=log|a|x(a≠0,|a|≠1|)在同一直角坐標(biāo)系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某個(gè)與正整數(shù)n有關(guān)的命題:已知當(dāng)n=3時(shí)該命題不成立,如果當(dāng)n=k(k∈N+)時(shí)命題成立,可推得當(dāng)n=k+1時(shí)命題也成立.那么可推得( 。
A.當(dāng)n=5時(shí)該命題不成立B.當(dāng)n=5時(shí)該命題成立
C.當(dāng)n=2時(shí)該命題不成立D.當(dāng)n=2時(shí)該命題成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等式$sin(θ+\frac{π}{6})=1-{log_{\frac{1}{2}}}x$,則x的取值范圍是( 。
A.[1,4]B.$[{\frac{1}{4},1}]$C.[2,4]D.$[{\frac{1}{4},4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x<1}\\{2x+k,x≥1}\end{array}\right.$為(-∞,+∞)上的增函數(shù),則k的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知⊙A:(x-1)2+y2=16及定點(diǎn)B(-1,0),點(diǎn)P為⊙A上的任意一點(diǎn),線段PB的垂直平分線交PA于M點(diǎn),則點(diǎn)M的軌跡方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.甲、乙兩名同學(xué)從三門選修課中各選修兩門,則兩人所選課程中恰有一門相同的概率為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案