9.已知數(shù)列的前5項(xiàng)為1$\frac{1}{3}$,2$\frac{1}{9}$,3$\frac{1}{27}$,4$\frac{1}{81}$,5$\frac{1}{243}$.
(1)寫出該數(shù)列的一個(gè)通項(xiàng)公式;
(2)求該數(shù)列的前n項(xiàng)和Sn

分析 (1)由1$\frac{1}{3}$=1+$\frac{1}{3}$,2$\frac{1}{9}$=2+$(\frac{1}{3})^{2}$,…5$\frac{1}{243}$=5+$(\frac{1}{3})^{5}$.可得:該數(shù)列的通項(xiàng)公式為:an=n+$(\frac{1}{3})^{n}$.
(2)利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出該數(shù)列的前n項(xiàng)和Sn

解答 解:(1)∵1$\frac{1}{3}$=1+$\frac{1}{3}$,2$\frac{1}{9}$=2+$(\frac{1}{3})^{2}$,3$\frac{1}{27}$=3+$(\frac{1}{3})^{3}$,4$\frac{1}{81}$=4+$(\frac{1}{3})^{4}$,5$\frac{1}{243}$=5+$(\frac{1}{3})^{5}$.
可得:該數(shù)列的通項(xiàng)公式為:an=n+$(\frac{1}{3})^{n}$.
(2)該數(shù)列的前n項(xiàng)和Sn=(1+2+…+n)+$[\frac{1}{3}+(\frac{1}{3})^{2}+…+(\frac{1}{3})^{n}]$
=$\frac{n(n+1)}{2}$+$\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}$
=$\frac{n(n+1)}{2}$+$\frac{1}{2}[1-(\frac{1}{3})^{n}]$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知兩個(gè)不同的平面α,β,若l∥α,則”l⊥β”是”α⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)在正項(xiàng)數(shù)列{an}中,a12+$\frac{{{a}_{2}}^{2}}{{2}^{2}}$+$\frac{{{a}_{3}}^{2}}{{3}^{2}}$+…+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$=4n-3,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2n項(xiàng)和為$\frac{n}{4n+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知{x|ax2+bx+c≥0}=[α,β],{x|ax2+(b-1)x+c≥0}=[p,q],若那么α、β、p、q中負(fù)數(shù)的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱的是( 。
A.f(x)=lgxB.f(x)=3xC.f(x)=lg(x+$\sqrt{1+{x}^{2}}$)D.f(x)=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且a1+a2=4,$\frac{2{S}_{n+1}+1}{2{S}_{n}+1}$=$\frac{{a}_{2}}{{a}_{1}}$=c(c>0,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=anlog3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y∈R且x$\sqrt{1-{y}^{2}}$+y$\sqrt{1-{x}^{2}}$=1,則$\sqrt{{x}^{2}+{y}^{2}}$=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$.
(1)求$\frac{f(2)}{f(\frac{1}{2})}$的值.
(2)求f(3)+f(4)+…+f(2015)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2015}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a$•($\overrightarrow a$+2$\overrightarrow b$)=0,|${\overrightarrow a}$|=|${\overrightarrow b}$|=1,且|${\overrightarrow c$-$\overrightarrow a$-2$\overrightarrow b}$|=1,則|${\overrightarrow c}$|的最大值為( 。
A.2B.4C.$\sqrt{5}$+1D.$\sqrt{3}$+1

查看答案和解析>>

同步練習(xí)冊(cè)答案