17.設(shè)i為虛數(shù)單位,則復(fù)數(shù)z=$\frac{{{i^{2015}}}}{{1-{i^{2015}}}}$在復(fù)平面中對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)的單位的冪運(yùn)算,復(fù)數(shù)的除法運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z=$\frac{{{i^{2015}}}}{{1-{i^{2015}}}}$=$\frac{-i}{1+i}$=$\frac{-i(1-i)}{(1+i)(1-i)}$=$\frac{-1-i}{2}$,復(fù)數(shù)對(duì)應(yīng)點(diǎn)為($-\frac{1}{2},-\frac{1}{2}$).在第三象限.
故選C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)的幾何意義,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z滿足(z-2i)(1+i)=|1+$\sqrt{3}i$|(i為虛數(shù)單位),則復(fù)數(shù)z=(  )
A.1+iB.1-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知PA⊥平面ABCD,CD⊥AD,BA⊥AD,CD=AD=AP=4,AB=1.
(1)求證:CD⊥平面ADP;
(2)若M為線段PC上的點(diǎn),當(dāng)BM⊥AC時(shí),求二面角C-AB-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={1,2,3,4},B={0,1,2},則A∪B=( 。
A.{0,1,2,3,4}B.{0,1,2)C.{1,2}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-a|,關(guān)于x的不等式|f(2x+a)-2f(x)|≤2的解集為{x|1≤x≤2},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a<0;q:實(shí)數(shù)x滿足x2-x-6≤0或x2+2x-8>0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}、{bn} 都是等差數(shù)列,Sn、Tn分別是它們的前n項(xiàng)和,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{n+3}$,則$\frac{{a}_{2}+{a}_{8}}{_{3}+_{9}}$的值為$\frac{32}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.當(dāng)m∈N*,命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題是( 。
A.若方程x2+x-m=0有實(shí)根,則m>0B.若方程x2+x-m=0有實(shí)根,則m≤0
C.若方程x2+x-m=0沒(méi)有實(shí)根,則m>0D.若方程x2+x-m=0沒(méi)有實(shí)根,則m≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)i(2-i)=( 。
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案