3.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 利用向量夾角公式即可得出.

解答 解:∵$\overrightarrow{a}•\overrightarrow$=3+2=5,$|\overrightarrow{a}|$=$\sqrt{{3}^{2}+(-1)^{2}}$=$\sqrt{10}$,$|\overrightarrow|$=$\sqrt{{1}^{2}+(-2)^{2}}$=$\sqrt{5}$.
兩向量的夾角θ的取值范圍是,θ∈[0,π],
∴$cos<\overrightarrow{a},\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{5}{\sqrt{10}×\sqrt{5}}$=$\frac{\sqrt{2}}{2}$,
∴$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$,
故選:B.

點(diǎn)評 本題考查了向量夾角公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若f(x)是定義在R上的函數(shù),對任意的實數(shù)x都有:f(x+6)≤f(x+2)+4和f(x+4)≥f(x+2)+2,且f(1)=1,則f(2013)=2013.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知全集∪=A∪B∪C,又知card(∪)=24,card(A)=12,card(B)=10,card(C)=13,card(A∩B∩C)=2,則card((A∩B)∪(B∩C)∪(C∩A))=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{a}_{n}^{2}}+2}$,an>0,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=$\frac{{x}^{3}-3x+a}{x}$,f(x)>0在x∈[$\frac{1}{2}$,2]時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x,y∈(0,+∞),2x-1=($\frac{1}{2}$)y,若$\frac{1}{x}$+$\frac{m}{y}$(m>0)的最小值為3,則m的值為4-2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在元宵節(jié)燈會上,小明在門口A處看到正前方上空一紅燈籠,測得此時的仰角為45°,前進(jìn)200米到達(dá)B處,測得此時的仰角為60°,小明身高1.8米,試計算紅燈籠的高度(精確到1m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.二次曲線$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))的焦點(diǎn)坐標(biāo)為( 。
A.(±5,0)B.(0,5)C.(±$\sqrt{7}$,0)D.(0,±$\sqrt{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(1,-3,1),$\overrightarrow$=(-1,1,-3),則|$\overrightarrow{a}$-$\overrightarrow$|=6.

查看答案和解析>>

同步練習(xí)冊答案