20.定義R在上的單調(diào)函數(shù)f(x)滿足f(3)=log23,且對任意x,y∈R,都有f(x+y)=f(x)+f(y),
(1)求f(0);                
(2)求證:f(x)為奇函數(shù);
(3)若f(k•3x)+f(3x-9x)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

分析 (1)令x=y=0,列方程解出f(0);
(2)令y=-x,得f(x)+f(-x)=f(0)=0,得到結(jié)論;
(3)根據(jù)函數(shù)的奇偶性和單調(diào)性得f(k•3x)<-f(3x-9x)=f(9x-3x),于是k•3x<-3x+9x,分離參數(shù)得k<-1+3x,于是k小于-1+3x的最小值.

解答 解:(1)令x=y=0,則f(0)=f(0)+f(0),∴f(0)=0.
(2)證明:令y=-x,則有f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0;
∴f(x)=-f(x)
∴f(x)為奇函數(shù).
(3)∵函數(shù)f(x)在R在上的單調(diào)函數(shù),f(0)=0,f(3)=log23>0,
∴函數(shù)f(x)在R上為單調(diào)增函數(shù).
∵f(k•3x)+f(3x-9x)<0,∴f(k•3x)<-f(3x-9x)=f(9x-3x),
∴k•3x<-3x+9x,k<-1+3x
∵-1+3x>-1,∴k≤-1.
∴實數(shù)k的取值范圍是(-∞,-1].

點評 本題考查了抽象函數(shù)求值,函數(shù)奇偶性的證明,單調(diào)性的應(yīng)用,合理選擇x,y的值是證明關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC的三個內(nèi)角A,B,C,若$\frac{\sqrt{3}cosA+sinA}{\sqrt{3}sinA-cosA}$=tan(-$\frac{7}{12}$π),則2cosB+sin2C的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若xlog52≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為( 。
A.-4B.-3C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=asinx+bcosx,其中a∈R,b∈R,如果對任意x∈R,都有f(x)≠2,那么在不等式①-4<a+b<4;②-4<a-b<4;③a2+b2<2;④a2+b2<4中,一定成立的不等式的序號是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若復(fù)數(shù)z滿足z=1-$\frac{1}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的模為( 。
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合M={x|x2≤2x},N={y|y=1-x,x∈M},則M∩N等于( 。
A.{x|-1≤x≤0}B.{x|1≤x≤2}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)全集U=R,集合A={x|-2<x<2},B={x|x≥1},求A∪B,∁u(A∪B),(∁uA)∩(∁uB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,滿足an=$\frac{{S}_{n}}{n}$+2n-2,n∈N*,且S2=6.
(1)求數(shù)列{an}的通項公式;
(2)證明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若不等式x2+y2≤2所表示的區(qū)域為M,不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{y≥2x-6}\end{array}\right.$表示的平面區(qū)域為N,現(xiàn)隨機(jī)向區(qū)域N內(nèi)拋一粒豆子,則豆子落在區(qū)域M內(nèi)的概率為$\frac{π}{24}$.

查看答案和解析>>

同步練習(xí)冊答案