10.已知函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),f′(x)為其導(dǎo)函數(shù),若對于任意實數(shù)x,有f(x)-f′(x)>0,則( 。
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)與f(2016)大小不確定

分析 設(shè)g(x)=$\frac{f(x)}{{e}^{x}}$,對其進行求導(dǎo),根據(jù)f(x)-f′(x)>0,得到g(x)是減函數(shù),利用單調(diào)性進行求解.

解答 解:設(shè)g(x)=$\frac{f(x)}{{e}^{x}}$,
∴g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵對于任意實數(shù)x,有f(x)-f′(x)>0,
∴g′(x)<0,
∴g(x)在R上單調(diào)遞減,
∴g(2015)>g(2016),
∴$\frac{f(2015)}{{e}^{2015}}$>$\frac{f(2016)}{{e}^{2016}}$,
∴ef(2015)>f(2016),
故選:A.

點評 本題考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,解題時要認真審題,注意導(dǎo)數(shù)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.化簡$\frac{1+sinθ-cosθ}{1+sinθ+cosθ}$+$\frac{1+sinθ+cosθ}{1+sinθ-cosθ}$為( 。
A.$\frac{2}{sinθ}$B.cos2θC.$\frac{1}{cosθ}$D.sin2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{{1+a{x^2}}}{x+b}$的圖象經(jīng)過點(1,3),并且g(x)=xf(x)是偶函數(shù).
(1)求實數(shù)a、b的值;
(2)用定義證明:函數(shù)g(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.與雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1有共同漸近線且焦距為12的雙曲線的標準方程為$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1,或$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若“x2-3x+2=0,則x=2”為原命題,則它的逆命題、否命題與逆否命題中,真命題的個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sinα=2cosα,則$cos(\frac{2015π}{2}-2α)$的值為$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合U={x∈Z|x(x-7)<0},A={1,4,5},B={2,3,5},則A∩(∁UB}=(  )
A.{1,5}B.{1,4,6}C.{1,4}D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集∪={1,2,3},集合B={1,2},且A∩B={1},則滿足條件的集合A的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示的程序框圖,運行相應(yīng)的程序,輸出的S值為(  )
A.12B.24C.48D.120

查看答案和解析>>

同步練習(xí)冊答案