【題目】東亞運動會將于2013年10月6日在天津舉行.為了搞好接待工作,組委會打算學習北京奧運會招募大量志愿者的經(jīng)驗,在某學院招募了16名男志愿者和14名女志愿者,調查發(fā)現(xiàn),男女志愿者中分別有10人和6人喜愛運動,其余人不喜歡運動.
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛運動 | 不喜愛運動 | 總計 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計 | 30 |
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜愛運動有關?
(3)如果從喜歡運動的女志愿者中(其中恰有4人會外語),抽取2名負責翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2=,其中
n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
【答案】(1)見解析;(2)不能;(3)
【解析】試題分析:
(1)利用總數(shù)和喜愛運動人數(shù)可求得不喜愛運動人數(shù),從而得出喜愛運動、不喜愛運動總人數(shù);
(2)利用公式計算出可得結論;
(3)從6人中選2人,至少有1人勝任翻譯工作的對立事件是沒有1人勝任翻譯工作,可把6人編號,寫出選2人的所有可能,從中得出不勝任翻譯的選法數(shù),利用對立事件概率公式可計算概率.
試題解析:
(1)
喜愛運動 | 不喜愛運動 | 總計 | |
男 | 10 | 6 | 16 |
女 | 6 | 8 | 14 |
總計 | 16 | 14 | 30 |
(2)根據(jù)已知數(shù)據(jù)可求得:
K2=≈1.157 5<2.706,
因此,在犯錯誤的概率不超過0.10的前提下不能判斷喜愛運動與性別有關.
(3)喜歡運動的女志愿者有6人,設喜歡運動的女志愿者分別為A,B,C,D,E,F,其中A,B,C,D會外語,則從這6人中任取2人,共15種取法.其中兩人都不會外語的只有EF一種取法.故抽出的志愿者之中至少有1人能勝任翻譯工作的概率是P=1-=.
科目:高中數(shù)學 來源: 題型:
【題目】用長為,寬為的長方形鐵皮做一個無蓋的容器.先在四角分別截去一個小正方形,然后把四邊翻轉,再焊接而成(如圖).問該容器的高為多少時,容器的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),,.
(1)求函數(shù)的單調區(qū)間;
(2)當時,的兩個極值點為,().
①證明:;
②若,恰為的零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.
(1)現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;
(2)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
span>2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖①,正三角形的邊長為4,是邊上的高,,分別是和邊的中點,現(xiàn)將△沿翻折成直二面角,如圖②.
(1)判斷直線與平面的位置關系,并說明理由;
(2)求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的A,B,C三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時間;
(2)假設這三種部件的生產(chǎn)同時開工,試確定正整數(shù)k的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是單調減函數(shù),若將方程與的解分別稱為函數(shù)的不動點與穩(wěn)定點.則“是的不動點”是“是的穩(wěn)定點”的 ( 。
A.充要條件 B.充分不必要條件
C.必要不充分條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N。
(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com