14.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且$\sqrt{3}$bsinA=acosB.
(1)求B;
(2)求$\frac{{a}^{2}+^{2}-{c}^{2}}{4^{2}}$的取值范圍.

分析 (1)根據(jù)條件及正弦定理便可得到$\sqrt{3}$sinBsinA=sinAcosB,可以得到tanB=$\frac{\sqrt{3}}{3}$,從而得出B;
(2)$\frac{{a}^{2}+^{2}-{c}^{2}}{4^{2}}$=$\frac{2abcosC}{4^{2}}$=sinAcosC=sinAcos($\frac{5}{6}$π-A)=-$\frac{1}{2}$sin(2A+$\frac{π}{6}$)+$\frac{1}{4}$,根據(jù)A的范圍,即可得出結(jié)論.

解答 解:(1)∵$\sqrt{3}$bsinA=acosB,
∴$\sqrt{3}$sinBsinA=sinAcosB,
∴tanB=$\frac{\sqrt{3}}{3}$,
∵0<B<π;
∴B=$\frac{π}{6}$;
(2)$\frac{{a}^{2}+^{2}-{c}^{2}}{4^{2}}$=$\frac{2abcosC}{4^{2}}$=sinAcosC=sinAcos($\frac{5}{6}$π-A)
=sinA(-$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)=-$\frac{\sqrt{3}}{4}$sin2A-$\frac{1}{4}$cos2A+$\frac{1}{4}$=-$\frac{1}{2}$sin(2A+$\frac{π}{6}$)+$\frac{1}{4}$,
∵0<A<$\frac{5}{6}$π,
∴$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{11}{6}$π,
∴-1≤sin(2A+$\frac{π}{6}$)≤1,
∴-$\frac{1}{4}$≤$\frac{{a}^{2}+^{2}-{c}^{2}}{4^{2}}$≤$\frac{3}{4}$.

點評 本題考查正弦定理和余弦定理的運用,考查三角函數(shù)知識的運用,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式及最小正周期;
(2)求f(x)的最大值以及取得最大值時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=x2-$\frac{2}{{x}^{2}}$,則f(x)(  )
A.是奇函數(shù).非偶函數(shù)B.是偶函數(shù),非奇函數(shù)
C.既是奇函數(shù),又是偶函數(shù)D.既非奇函數(shù),又非偶函教

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)cos(π+α)=$\frac{4}{5}$,且α為第三象限角,求$\frac{sin(π-α)-cos(π+α)}{sin(-α)+cos(2π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(0,1),$\overrightarrow$=(2,0),則|2$\overrightarrow{a}$+$\overrightarrow$|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)A={x|y=$\sqrt{2-x}$},B={y|y=1n(1+x)},則A∩B=(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知,命題p:?x∈R,x2+ax+2≥0,命題q:?x∈[-3,-$\frac{1}{2}$],x2-ax+1=0.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知角α的終邊上一點的坐標(biāo)為(2sin$\frac{π}{3}$,-2cos$\frac{π}{3}$),則α的最小正值為$\frac{11π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)向量$\overrightarrow{a}$=(1,2),|$\overrightarrow$|=2$\sqrt{5}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°則$\overrightarrow{a}$•$\overrightarrow$的值為( 。
A.$\sqrt{5}$B.5C.5$\sqrt{5}$D.10

查看答案和解析>>

同步練習(xí)冊答案