4.已知復(fù)數(shù)z=$\frac{(1-i)^{2}}{1+i}$,則z=-1-i.

分析 利用復(fù)數(shù)的乘除法運(yùn)用,即可得出結(jié)論.

解答 解:復(fù)數(shù)z=$\frac{(1-i)^{2}}{1+i}$=$\frac{-2i}{1+i}$=$\frac{-2i(1-i)}{2}$=-1-i,
故答案為:-1-i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的乘除法運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓的焦點(diǎn)是F1(-1,0)和F2(1,0),又過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的離心率;
(2)又設(shè)點(diǎn)P在這個(gè)橢圓上,且|PF1|-|PF2|=1,求∠F1PF2的余弦的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=f(x)滿足對(duì)任意x1,x2∈[0,2](x1≠x2),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是(  )
A.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)B.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)D.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0)時(shí),f(x)=$\frac{1}{4^x}-\frac{a}{2^x}$(a∈R).
(1)討論f(x)在(0,1]上的最大值;
(2)若f(x)是(0,1]上的增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.直線2x-y-3=0關(guān)于x軸對(duì)稱的直線方程為2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,設(shè)直線l:y=xtanα+m,其中m≠0,給出下列結(jié)論:
①直線l的方向向量與向量$\overrightarrow a=({cosα,sinα})$共線;
②若$0<α<\frac{π}{4}$,則直線l與直線y=x的夾角為$\frac{π}{4}-α$;
③直線l與直線xsinα-ycosα+n=0(n≠m)一定平行;
寫(xiě)出所有真命題的序號(hào)①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.我校為進(jìn)行“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S(平方米)的矩形AMPN健身場(chǎng)地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場(chǎng)地每平方米的造價(jià)為$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價(jià)為$\frac{12k}{{\sqrt{S}}}$元(k為正常數(shù)).
(1)試用x表示S,并求S的取值范圍;
(2)求總造價(jià)T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價(jià)T最低(不要求求出最低造價(jià)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,則實(shí)數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a,b,c均為正數(shù),且分別為函數(shù)$f(x)={2^x}-{log_{\frac{1}{2}}}x$,$g(x)={(\frac{1}{2})^x}-{log_{\frac{1}{2}}}x$,$h(x)={(\frac{1}{2})^x}-{log_{\frac{2}{3}}}x$的零點(diǎn),則( 。
A.a<b<cB.c<b<aC.c<a<bD.a<c<b

查看答案和解析>>

同步練習(xí)冊(cè)答案