16.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,S5=3(a2+a8),則$\frac{{a}_{5}}{{a}_{3}}$的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{5}{6}$

分析 利用等差數(shù)列的性質(zhì)與通項(xiàng)公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d.
由等差數(shù)列{an}的性質(zhì)可得:a2+a8=2a5,
∴S5=3(a2+a8)=6a5
∴5a1+$\frac{5×4}{2}d$=6(a1+4d),
化為a1=-14d.
則$\frac{{a}_{5}}{{a}_{3}}$=$\frac{{a}_{1}+4d}{{a}_{1}+2d}$=$\frac{-10d}{-12d}$=$\frac{5}{6}$.
故選:D.

點(diǎn)評 本題考查了等差數(shù)列的性質(zhì)與通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知i為虛數(shù)單位,則z•(1+i)=3-i,則復(fù)數(shù)z等于(  )
A.2-2iB.2+2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-x的圖象是曲線C
(1)求曲線C在點(diǎn)M(t,f(t))處的切線方程;
(2)求過點(diǎn)P(-1,0)的曲線C的切線方程;
(3)假設(shè)a>0,如果過點(diǎn)(a,b)可以作曲線C的三條切線,證明:-a<b<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某個(gè)小區(qū)為了制訂自行車棚的整修方案,進(jìn)行了一次以家庭為單位的自行車數(shù)量調(diào)查.按照家庭成員的人數(shù)采用分層抽樣的方法,一部分?jǐn)?shù)據(jù)如表所示,其中m=2n.通過調(diào)查統(tǒng)計(jì)了每個(gè)家庭的自行車數(shù)量,將結(jié)果繪制成條形圖,如圖所示.
 家庭人數(shù) 1 2 3 4 5
 家庭數(shù)量 6 m 72  18
 抽樣數(shù)量  4 n 10 
(1)計(jì)算這個(gè)小區(qū)的家庭總數(shù)和樣本容量;
(2)根據(jù)圖中所顯示的統(tǒng)計(jì)結(jié)果,估計(jì)這個(gè)小區(qū)共有多少輛自行車.
(3)從樣本中任取兩個(gè)家庭,設(shè)這兩個(gè)家庭的自行車數(shù)量分別為a和b,記不等式x2-ax+b≤0的解集中整數(shù)的個(gè)數(shù)為η,求η的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Acos(ωx+$\frac{π}{4}$ω)(A>0)在(0,$\frac{π}{8}$)上是減函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某集團(tuán)公司在2013年投入巨資分三期興建垃圾資源處理廠,1期2013年投入,2期2015年投入,3期2017年投入,具體情況如下表:
 1期投入1億元 建垃圾堆肥廠 造有機(jī)肥十多萬噸 年收益2千萬元
 2期投入4億元 建焚燒發(fā)電1廠 年發(fā)電1.3億kw 年收益4千萬元
 3期投入2億元 建焚燒發(fā)電2廠年發(fā)電1.3億kw  年收益4千萬元
如果每期的投資從第二年開始見效,且不考慮存貸款利息,設(shè)2013年以后的n年(2014年第1年)的總收益為f(x)(單位:千萬元),試求f(n)的表達(dá)式,并預(yù)測哪一年能收回全部投資款.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某辦公室剛裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個(gè)員工只能任意選擇1種,則員工甲和乙選擇的植物不同的概率為(  )
A.$\frac{7}{16}$B.$\frac{9}{16}$C.$\frac{3}{4}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.△ABC中,滿足:$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,M是BC的中點(diǎn).
(1)若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,求向量$\overrightarrow{AB}$+2$\overrightarrow{AC}$與向量2$\overrightarrow{AB}$+$\overrightarrow{AC}$的夾角的余弦值.
(2)若點(diǎn)P是邊BC上一點(diǎn),|$\overrightarrow{AP}$|=2,且$\overrightarrow{AP}$•$\overrightarrow{AC}$=2,$\overrightarrow{AP}$•$\overrightarrow{AB}$=1,求|$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AP}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=1+lgx(x>0),f(x)的反函數(shù)為f-1(x),則f(1)+f-1(x)=10x-1+1.

查看答案和解析>>

同步練習(xí)冊答案