17.在直角坐標(biāo)系xOy中,射線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù),t≥0)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)已知M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,求P點(diǎn)的軌跡的極坐標(biāo)方程;
(Ⅱ)記P點(diǎn)的軌跡為C2,設(shè)射線l與曲線C1與C2分別交于點(diǎn)A,B(異于A,B極點(diǎn)),求|AB|.

分析 (I)設(shè)P(ρ,θ),則M($\frac{ρ}{2}$,θ),將M點(diǎn)極坐標(biāo)代入曲線C1極坐標(biāo)方程得出P的軌跡方程.
(II)由軌跡方程的定義可知|AB|=|OA|,故只需求出l被曲線C1所截線段長(zhǎng)|OA|即可.使用參數(shù)幾何意義求出|OA|.

解答 解:(I)設(shè)P點(diǎn)極坐標(biāo)為(ρ,θ),∵$\overrightarrow{OP}$=2$\overrightarrow{OM}$,∴M點(diǎn)的極坐標(biāo)為($\frac{ρ}{2}$,θ).
∵M(jìn)是C1上的動(dòng)點(diǎn),∴$\frac{ρ}{2}$=4sinθ,即ρ=8sinθ.
∴P點(diǎn)的軌跡的極坐標(biāo)方程是ρ=8sinθ.
(II)曲線C1的直角坐標(biāo)方程為x2+(y-2)2=4.
將$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù),t≥0)代入x2+(y-2)2=4得t2-$\sqrt{3}t$=0,
解得t1=0,t2=$\sqrt{3}$,∴|OA|=$\sqrt{3}$,
由(I)可知|OB|=2|OA|=2$\sqrt{3}$.
∴|AB|=|OA|=$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了軌跡方程的求法,極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,參數(shù)方程的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若α+β=$\frac{π}{4}$,且α,β均不等于kπ+$\frac{π}{2}$(k∈Z),求證:(tanα+1)(tanβ+1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在3到42之間插入12個(gè)數(shù),使得這14個(gè)數(shù)組成一個(gè)等差數(shù)列,求這個(gè)等差數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{3}{2}+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox軸為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρsin2θ=6cosθ
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),M是曲線C1上的動(dòng)點(diǎn),點(diǎn)P滿足$\overrightarrow{OP}=2\overrightarrow{OM}$,
(1)求點(diǎn)P的軌跡方程C2
(2)在以O(shè)為極點(diǎn),X軸的正半軸為極軸的極坐標(biāo)系中,射線$θ=\frac{π}{3}$與曲線C1,C2交于不同于原點(diǎn)的點(diǎn)A,B求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知曲線C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(1)將C的方程化為普通方程;
(2)若點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求3x+4y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ為參數(shù)),直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.(其中坐標(biāo)系滿足極坐標(biāo)原點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與直角坐標(biāo)系x軸正半軸重合,單位長(zhǎng)度相同.)
(Ⅰ)將曲線C的參數(shù)方程化為普通方程,把直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)M是直線l與x軸的交點(diǎn),N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.使函數(shù)f(x)=|x|與g(x)=-x2+2x都是增函數(shù)的區(qū)間可以是( 。
A.[0,1]B.(-∞,1]C.(-∞,0]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,且經(jīng)過(guò)點(diǎn)A(0,-1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如果過(guò)點(diǎn)$B(0,\frac{3}{5})$的直線與橢圓C交于M,N兩點(diǎn)(M,N點(diǎn)與A點(diǎn)不重合),當(dāng)|AM|=|AN|時(shí),求直線MN的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案