2.已知曲線C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(1)將C的方程化為普通方程;
(2)若點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求3x+4y的取值范圍.

分析 (1)根據(jù)參數(shù)得平方和等于1消去參數(shù)得到普通方程;
(2)把參數(shù)方程代入3x+4y得到關(guān)于θ的三角函數(shù),根據(jù)三角函數(shù)的性質(zhì)求出最值.

解答 解:(1)∵$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$,∴$\left\{\begin{array}{l}{cosθ=\frac{x}{4}}\\{sinθ=\frac{y}{3}}\end{array}\right.$,∴曲線C的普通方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.
(2)∵3x+4y=12cosθ+12sinθ=12$\sqrt{2}$sin($θ+\frac{π}{4}$).
∴當(dāng)sin($θ+\frac{π}{4}$)=1時(shí),3x+4y取得最大值12$\sqrt{2}$,
當(dāng)sin($θ+\frac{π}{4}$)=-1時(shí),3x+4y取得最小值-12$\sqrt{2}$.
∴3x+4y的取值范圍是[-12$\sqrt{2}$,12$\sqrt{2}$].

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,參數(shù)方程的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知α∈(0,$\frac{π}{2}$),β∈(一$\frac{π}{2}$,0),且coa(α-β)=$\frac{3}{5}$,sinβ=-$\frac{\sqrt{2}}{10}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若cos(75°+α)=$\frac{5}{13}$,則cos(15°-α)+sin(α-15°)的值為(  )
A.$\frac{7}{13}$B.-$\frac{17}{13}$C.$\frac{7}{13}$或-$\frac{17}{13}$D.$±\frac{7}{13}$或$±\frac{17}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-t\\ y=t\end{array}\right.$(t為參數(shù)),直線l與拋物C:y2=4x相交于A、B兩點(diǎn).
(I)寫(xiě)出直線l的普通方程;
(II)設(shè)拋物線C的焦點(diǎn)為F,求$\overline{AF}•\overline{BF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,射線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù),t≥0)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)已知M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,求P點(diǎn)的軌跡的極坐標(biāo)方程;
(Ⅱ)記P點(diǎn)的軌跡為C2,設(shè)射線l與曲線C1與C2分別交于點(diǎn)A,B(異于A,B極點(diǎn)),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓O:x2+y2=1的切線l與橢圓C:x2+3y2=4相交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)極坐標(biāo)與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,原點(diǎn)O為極點(diǎn),x軸坐標(biāo)軸為極軸,曲線C1的極坐標(biāo)方程為ρ2cos2θ+3=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2t+m}\\{y=t}\end{array}\right.$(t是參數(shù),m是常數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C1與C2有兩個(gè)不同的公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.(3+4i)(-2-3i)=6-17i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知sinα-cosα=$\frac{\sqrt{10}}{5}$,α∈(π,2π).
(Ⅰ)求sinαcosα的值; 
(Ⅱ)求tanα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案