5.已知函數(shù)f(x)=x2-(a-1)x-a2
(1)若a=3,x∈[0,2],求f(x)的最值;
(2)若a<0,不等式sin2x+acosx+a2≥1+cosx的解集為R,求a的取值范圍.

分析 (1)當(dāng)a=3時(shí),f(x)=x2-2x-3=(x-1)2-4,x∈[0,2],由于對(duì)稱軸為x=1,根據(jù)二次函數(shù)的性質(zhì)即可求出值域.
(2)不等式進(jìn)行等價(jià)轉(zhuǎn)化為關(guān)于cosx的一元二次不等式,利用二次函數(shù)的性質(zhì)和圖象列不等式組求得答案.

解答 解:(1)當(dāng)a=3時(shí),f(x)=x2-2x-3=(x-1)2-4,x∈[0,2],
∴對(duì)稱軸為x=1,
∴函數(shù)f(x)在[0,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增,
∴f(x)min=f(1)=-4,f(x)max=f(0)=-3,
故值域?yàn)閇-4,-3]
(2)不等式等價(jià)于1-cos2x+acosx+a2-1-cosx≥0,恒成立,
整理得-cos2x+(a-1)cosx+a2≥0,
設(shè)cosx=t,則-1≤t≤1,
g(t)=-t2+(a-1)t+a2,要使不等式恒成立需
$\left\{\begin{array}{l}{g(1)=-1+a-1+{a}^{2}≥0}\\{g(-1)=-1+a+1+{a}^{2}≥0}\\{a<0}\end{array}\right.$,
解得a≤-2,
故a的取值范圍為(-∞,-2]

點(diǎn)評(píng) 本題主要考查了一元二次不等式的解法,二次函數(shù)的性質(zhì).注重了對(duì)數(shù)形結(jié)合思想的運(yùn)用和問題的分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列所給點(diǎn)中,在方程x2-xy+2y+1=0表示的曲線上的是(  )
A.(0,0)B.(1,-1)C.$(0,-\frac{1}{2})$D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的定義域
(1)f(x)=$\sqrt{3x+2}$
(2)f(x)=$\sqrt{x+3}+\frac{1}{x+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三棱錐A-BCD的四個(gè)頂點(diǎn)同在一個(gè)球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=2,則球O的表面積等于12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓(x-3)2+(y+4)2=2關(guān)于直線y=0對(duì)稱的圓的方程是(  )
A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)2=2D.(x-3)2+(y-4)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若圓x2+y2-2x-4y-1=0上存在兩點(diǎn)關(guān)于直線2ax+by-2=0(a>0,b>0)對(duì)稱,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.5B.7C.$2\sqrt{2}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某工廠為了了解工人文化程度與月收入的關(guān)系,隨機(jī)調(diào)查了部分工人,得到如表:
文化程度與月收入列表   (單位:人)
月收入2000元以下月收入2000元及以上總計(jì)
高中文化以上104555
高中文化及以下203050
總計(jì)3075105
由上表中數(shù)據(jù)計(jì)算得K2=$\frac{{105×{{({10×30-20×45})}^2}}}{55×50×30×75}$≈6.1,則估計(jì)根據(jù)如表你認(rèn)為有97.5%以上把握確認(rèn)“文化程度與月收入有關(guān)系”.
P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
K0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a(x-3)\end{array}\right.$,若z=3x+2y的最小值為1,則a=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:?x∈R,${(\frac{1}{10})^{x-3}}$≤cos2.若(?p)∧q是假命題,則命題q可以是( 。
A.若-2≤m<0,則函數(shù)f(x)=-x2+mx在區(qū)間(-4,-1)上單調(diào)遞增
B.“1≤x≤4”是“${log_{\frac{1}{5}}}$x≥-1”的充分不必要條件
C.x=$\frac{π}{3}$是函數(shù)f(x)=cos 2x-$\sqrt{3}$sin 2x的一條對(duì)稱軸
D.若a∈[$\frac{1}{2}$,6),則函數(shù)f(x)=$\frac{1}{2}$x2-alnx在區(qū)間(1,3)上有極值

查看答案和解析>>

同步練習(xí)冊(cè)答案