16.已知四面體的6條棱所在的直線中有3對異面直線,那么在過正八面體(由2個棱長相同的四棱錐拼接而成,如圖所示)的任意2個頂點的所有直線中,隨機取2條,則這2條直線異面的情況有24種.

分析 正八面體12條棱,每條棱都有六條棱與之相交,一條平行,四條異面,由此能求出結果.

解答 解:∵正八面體12條棱,每條棱都有六條棱與之相交,一條平行,四條異面,
∴在過正八面體(由2個棱長相同的四棱錐拼接而成,如圖所示)的任意2個頂點的所有直線中,隨機取2條,
這2條直線異面的情況有:12×4÷2=24種情況.
故答案為:24.

點評 本題考查2條直線異面的情況有多少種,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x.
(1)求f(x)的對稱中心;
(2)若關于x的方程f(x)-m=2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上有二解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.給出下列幾種說法:
①若非零向量$\overrightarrow{a}$與$\overrightarrow$共線,則$\overrightarrow{a}$=$\overrightarrow$;
②若向量$\overrightarrow{a}$與$\overrightarrow$同向,且|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$;
③若兩向量有相同的基線,則兩向量相等;
④若$\overrightarrow{a}$$∥\overrightarrow$,$\overrightarrow∥\overrightarrow{c}$,則$\overrightarrow{a}∥\overrightarrow{c}$
其中錯誤說法的序號是①②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在四邊形ABCD中,BC=1,DC=2,四個內角A,B,C,D的度數(shù)之比為3:7:4:10.求:
(1)BD的長;
(2)AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題中真命題的個數(shù)為( 。
①命題“若lgx=0,則x=l”的逆否命題為“若lgx≠0,則x≠1”
②若“p∧q”為假命題,則p,q均為假命題
③命題p:?x∈R,使得sinx>l;則¬p:?x∈R,均有sinx≤1
④“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若“A+B”發(fā)生的概率為0.6,則$\overline{A}$,$\overline{B}$同時發(fā)生的概率為( 。
A.0.6B.0.36C.0.24D.0.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.當實數(shù)m為何值時,sinx=$\frac{1+m}{2+m}$有意義?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}•{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1.
(I)求數(shù)列{bn}的通項公式;
(Ⅱ)求數(shù)列{$\frac{{2}^{n}}{_{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.等比數(shù)列{an}中,an>0,a1=256,S3=448,Tn為數(shù)列{an}的前n項乘積,則T17=1.

查看答案和解析>>

同步練習冊答案