12.在△ABC中,已知M是BC中點(diǎn),設(shè)$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,則$\overrightarrow{AM}$=( 。
A.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$B.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$C.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

分析 根據(jù)向量三角形法則進(jìn)行化簡運(yùn)算即可.

解答 解:∵M(jìn)是BC中點(diǎn),
∴$\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{2}$($\overrightarrow{AC}+\overrightarrow{CB}$+$\overrightarrow{AC}$)
=$\frac{1}{2}$(2$\overrightarrow{AC}$+$\overrightarrow{CB}$)=$\frac{1}{2}$($\overrightarrow{CB}-2\overrightarrow{CA}$)
=$\frac{1}{2}$($\overrightarrow{a}$-2$\overrightarrow$)=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$,
故選:A.

點(diǎn)評 本題主要考查向量的基本運(yùn)算,利用向量三角形法則是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知0<x<π,sinα、cosα是方程5x2-x+m=0的兩實(shí)根,求:
(1)m的值;
(2)求sinα、cosα、tanα的值;
(3)sin3α+cos3α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,S3=6,an-2+an=16,若Sn=50,則n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f1(x)=sinx+cosx,且f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x),…(n∈N*,n≥2),則f1($\frac{π}{4}$)+f2($\frac{π}{4}$)+…+f2015($\frac{π}{4}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.為了使函數(shù)y=sinωx(ω>0)在區(qū)間[0,1]上僅出現(xiàn)10次最大值,則ω的取值范圍是[$\frac{37π}{2}$,$\frac{41π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=ln(x+a)-$\frac{1}{2}$ax2,a∈R,求f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+…+C${\;}_{n}^{2}$=C${\;}_{8}^{3}$(n∈N*).
(1)求n的值;
(2)求二項(xiàng)式($\sqrt{x}$-$\frac{2}{\root{3}{x}}$)n展開式的一次項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.關(guān)于x的不等式x2-2x+3>0解集為( 。
A.(-1,3)B.C.RD.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)向量$\overrightarrow{a}$=(λ+2,λ2-$\sqrt{3}$cosα),$\overrightarrow$=(m,$\frac{m+sinα}{2}$),其中λ,m,α為實(shí)數(shù).
(1)若λ=m=0,$\overrightarrow{a}$•$\overrightarrow$=cos2α+$\frac{1}{8}$,求tanα;
(2)若$\overrightarrow{a}$=2$\overrightarrow$,求$\frac{λ}{m}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案