分析 (1)設(shè)MN交AD交于Q點(diǎn)由∠MOD=30°,利用銳角三角函數(shù)可求MQ,OQ,進(jìn)而可求MN,AQ,代入S△PMN=$\frac{1}{2}$MN•AQ可求;
(2)設(shè)∠MOQ=θ,由θ∈[0,$\frac{π}{2}$],結(jié)合銳角三角函數(shù)的定義可求MQ=sinθ,OQ=cosθ,代入三角形的面積公式S△PMN=$\frac{1}{2}$MN•AQ=$\frac{1}{2}$(1+sinθ)(1+cosθ)展開(kāi)利用換元法,轉(zhuǎn)化為二次函數(shù)的最值求解.
解答 解:(1)設(shè)MN交AD交于Q點(diǎn),
∵PM=PN,
∴點(diǎn)P在線(xiàn)段AB上,
∵∠MQD=30°,
∴MQ=1,OQ=$\sqrt{3}$
∴S△PMN=$\frac{1}{2}$MN•AQ=$\frac{1}{2}$×3×(2+$\sqrt{3}$)=$\frac{{6+3\sqrt{3}}}{2}$….…(7分)
(2)設(shè)∠MOD=θ$({θ∈[{0,\frac{π}{2}}]})$,則 MQ=2sinθ,OQ=2cosθ.
設(shè)P到MN的距離為h,則h≤|AQ|=2+2cosθ,
∴S△PMN=$\frac{1}{2}$MN•h≤$\frac{1}{2}$(2+2sinθ)(2+2cosθ)=2 (1+sinθcosθ+sinθ+cosθ)
令sinθ+cosθ=t∈$[{1,\sqrt{2}}]$,則S△PMN=2 (1+$\frac{{{t^2}-1}}{2}$+t)=(t+1)2
當(dāng)t=$\sqrt{2}$即θ=$\frac{π}{4}$,且P在線(xiàn)段AB上時(shí),S△PMN取得最大值,最大值為$3+2\sqrt{2}$.…(15分)
點(diǎn)評(píng) 本題主要考查了三角函數(shù)的定義的應(yīng)用及利用三角函數(shù)求解函數(shù)的最值,換元法的應(yīng)用是求解的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | bn>cn | B. | bn<cn | C. | bn≥cn | D. | bn≤cn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $3\sqrt{3}$ | B. | $6\sqrt{3}$ | C. | 6 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{14π}{3}$ | B. | $-\frac{14π}{3}$ | C. | $\frac{7π}{18}$ | D. | $-\frac{7π}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com