12.(x+y)(x-y)7的展開式中,x3y5的系數(shù)為14.

分析 利用通項公式即可得出.

解答 解:(x-y)7的展開式的通項公式Tr+1=${∁}_{7}^{r}{x}^{7-r}(-y)^{r}$,
令r=5,滿足7-r=2,此時T6=-${∁}_{7}^{5}{x}^{2}{y}^{5}$,
令r=4,7-r=3,此時T5=${∁}_{7}^{4}{x}^{3}{y}^{4}$,
∴x3y5的系數(shù)為$-{∁}_{7}^{5}$+${∁}_{7}^{4}$=14.
故答案為:14.

點(diǎn)評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等比數(shù)列{an}中,a3=16,a5=4,則a7=(  )
A.1B.-1C.±1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)z滿足(1+2i)•z=|2-i|,則$\overline{z}$( 。
A.1+2iB.$\sqrt{5}$(1-2i)C.$\frac{\sqrt{5}}{5}$(1+2i)D.$\frac{\sqrt{5}}{5}$(1-2i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)雙曲線C的焦點(diǎn)在x軸上,漸近線方程為y=$±\frac{\sqrt{2}}{2}$x,則其離心率為$\frac{\sqrt{6}}{2}$;若點(diǎn)(4,2)在C上,則雙曲線C的方程為$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,則$\frac{x+y}{x+2}$的最大值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$兩條漸近線l1、l2與拋物線y2=-4x的準(zhǔn)線l圍成區(qū)域Ω(包含邊界),對于區(qū)域Ω內(nèi)任一點(diǎn)(x,y),若$\frac{y+1}{x+3}$的最大值小于1,則雙曲線C的離心率e的取值范圍為(1,$\sqrt{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題是假命題的是( 。
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow a$=(-2,1),$\overrightarrow b$=(-3,0),則$\overrightarrow a$在$\overrightarrow b$方向上的投影為2
D.“|x|≤1”是“x<1”的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知O為△ABC的外心,|$\overrightarrow{AB}$|=16,|$\overrightarrow{AC}$|=10$\sqrt{2}$,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且32x+25y=25,則∠B=( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:?x∈R,2x<3x;命題q:?x0∈(0,$\frac{π}{2}$),x0=$\sqrt{{x}_{0}}$,則下列命題中,真命題為( 。
A.(¬p)∧qB.p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

同步練習(xí)冊答案