設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S1=
1
3
a2-
1
3
,S2=
1
3
a3-
1
3
,則公比q=( 。
A、1B、4C、4或0D、8
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得a1=
1
3
a2-
1
3
,①;a1+a2=
1
3
a3-
1
3
,②;把①代入②變形可得.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,
∵S1=
1
3
a2-
1
3
,S2=
1
3
a3-
1
3

∴a1=
1
3
a2-
1
3
,①
a1+a2=
1
3
a3-
1
3
,②
把①代入②可得
1
3
a2-
1
3
+a2=
1
3
a3-
1
3
,
變形可得
4
3
a2=
1
3
a3,即
a3
a2
=4,故q=4
故選:B
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式和求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某品牌汽車的4S店對(duì)最近100位采用分期付款的購(gòu)車者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示:
付款方式分1期分2期分3期分4期分5期
頻數(shù)3525a10b
已知分3期付款的頻率為0.15,并且4S店銷售一輛該品牌的汽車,顧客分1期付款,其利潤(rùn)為1萬元;分2期或3期付款,其利潤(rùn)為1.5萬元;分4期或5期付款,其利潤(rùn)為2萬元,以頻率作為概率.
(Ⅰ)求事件A:“購(gòu)買該品牌汽車的3位顧客中,至多有1位分4期付款”的概率;
(Ⅱ)用X表示銷售一輛該品牌汽車的利潤(rùn),求X的分布列及數(shù)學(xué)期望E(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)與g(x)和區(qū)間D,如果存在唯一x0∈D,使|f(x0)-g(x0)|≤2,則稱函數(shù)f(x)與g(x)在區(qū)間D上的“友好函數(shù)”.現(xiàn)給出兩個(gè)函數(shù):
①f(x)=x2,g(x)=2x-4;     
②f(x)=2
x
,g(x)=x+3;
③f(x)=e-x,g(x)=-
1
x
;   
④f(x)=lnx,g(x)=x+1,
則函數(shù)f(x)與g(x)在區(qū)間(0,+∞)上為“友好函數(shù)”的是
 
.(填正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=40.1,b=log40.1,c=0.40.1,則( 。
A、a>b>c
B、b>a>c
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是各項(xiàng)為正數(shù)的等比數(shù)列,a1=1,a2+2a3=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若存在常數(shù)M,使得數(shù)列{cn}的前n項(xiàng)和Sn<M,則稱數(shù)列{cn}是“上界和數(shù)列”.試判斷數(shù)列{an}是否是“上界和數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為證書的數(shù)列{an}前n項(xiàng)和為sn,首項(xiàng)為a1,且an
1
2
和sn的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若an=(
1
2
)bn
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
-2x+1
2x+1+a
(a為實(shí)常數(shù))
(I)當(dāng)a=1時(shí),證明:f(x)不是奇函數(shù);
(Ⅱ)當(dāng)a=2時(shí),若f(x)<k對(duì)一切實(shí)數(shù)x成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則x1•x2…x2015的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組命題中,滿足“p或q為真”,且“非p為真”的是( 。
A、p:0=∅;q:0∈∅
B、p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù)
C、p:a+b≥2
ab
(a,b∈R);q不等式|x|>x的解集為(-∞,0)
D、p:圓(x-1)2+(y-2)2=1的面積被直線|x|=1平分;q:橢圓
x2
4
+
y2
3
=1的長(zhǎng)軸長(zhǎng)為4

查看答案和解析>>

同步練習(xí)冊(cè)答案