分析 觀察所給的有序?qū),可以看出:整體上按橫縱坐標(biāo)的和從小到大排列,如果和相同,按橫坐標(biāo)從小到大排列數(shù)對,當(dāng)排完和為n時(shí)共有$\frac{(1+n-1)(n-1)}{2}$個(gè)數(shù)對,由此能求出第68個(gè)數(shù)對.
解答 解:觀察所給的有序?qū)Γ梢钥闯觯?br />整體上按橫縱坐標(biāo)的和從小到大排列,
如果和相同,按橫坐標(biāo)從小到大排列數(shù)對,
而和為2的有(1,1),共1個(gè),和為3的有(1,2),(2,1)共2個(gè),和為4的有(1,3),(2,2),(3,1)共3個(gè),
所以當(dāng)排完和為n時(shí)共有$\frac{(1+n-1)(n-1)}{2}$個(gè)數(shù)對,
而$\frac{(1+12-1)(12-1)}{2}$=66<68<78=$\frac{(1+13-1)(13-1)}{2}$,
所以第68個(gè)數(shù)對的和為13,并且這個(gè)數(shù)對是和為13的第2個(gè)數(shù)對,
所以第68個(gè)數(shù)對是(2,11).
故答案為:(2,11).
點(diǎn)評 本題考查第68個(gè)數(shù)對的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意歸納推理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 垂直 | C. | 相交但不垂直 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n-1}{n}$ | B. | $\frac{n+2}{n+1}$ | C. | $\frac{n+1}{n}$ | D. | $\frac{n}{n+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com