14.在90°的二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)面內(nèi),且都垂直于棱AB,已知AB=5,AC=3,CD=5$\sqrt{2}$,則BD=( 。
A.4B.5C.6D.7

分析 由已知AC⊥AB,BD⊥AB,AC⊥BD,$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,由此能求出BD.

解答 解:如圖,AC⊥AB,BD⊥AB,
∵α-AB-β是90°的二面角,∴AC⊥BD,
∵$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
∴${\overrightarrow{CD}}^{2}$=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}$,
∵AB=5,AC=3,CD=5$\sqrt{2}$,
∴50=9+25+${\overrightarrow{BD}}^{2}$,
解得BD=4.
故選:A.

點(diǎn)評(píng) 本題考查線段長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知整數(shù)對(duì)按如圖規(guī)律排成,照此規(guī)律,則第68個(gè)數(shù)對(duì)是(2,11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a=$\frac{sin(kπ+α)}{sinα}+\frac{cos(kπ+α)}{cosα}$(k∈Z),則a的值構(gòu)成的集合為{2,-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,直線l1:3x+4y-15=0,l2經(jīng)過(guò)點(diǎn)O且與l1垂直.
(1)求直線l2的方程;
(2)設(shè)l1、l2、x軸兩兩相交的交點(diǎn)為A、B、C,試求△ABC內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.點(diǎn)P(1,t)(t>0)是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上一點(diǎn),A,B是該橢圓上異于點(diǎn)P的兩個(gè)點(diǎn),且直線PA,PB的傾斜角分別為72°和108°,則直線AB的斜率為( 。
A.-$\frac{1}{2}$或$\frac{1}{2}$B.tan18°C.$\frac{1}{2}$D.tan36°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.對(duì)于n∈N+,將n表示$n={a_0}×{2^k}+{a_1}×{2^{k-1}}+{a_2}×{2^{k-2}}+…+{a_{k-1}}×{2^1}+{a_k}×{2^0}$,當(dāng)i=0時(shí)ai=1,當(dāng)1≤i≤k時(shí),ai為0或1.記I(n)為上述表示中ai為0的個(gè)數(shù),例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,I(4)=2.則(1)I(10)=2; (2)$\sum_{n=1}^{63}{{2^{I(n)}}=}$364.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.長(zhǎng)寬高分別為5cm、4cm、3cm的長(zhǎng)方體的頂點(diǎn)均在同一球面上,則該球的表面積是50πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)正實(shí)數(shù)x,y滿足xy=$\frac{x-9y}{x+y}$,則y的最大值是$\sqrt{10}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若關(guān)于x的不等式ax2+bx+c>0的解集為{x|-2<x<1},則函數(shù)f(x)=bx2+cx+a的圖象可能為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案