14.設(shè)n是一個(gè)正整數(shù),則函數(shù)x+$\frac{1}{n{x}^{n}}$在正半實(shí)軸上的最小值是( 。
A.$\frac{n-1}{n}$B.$\frac{n+2}{n+1}$C.$\frac{n+1}{n}$D.$\frac{n}{n+1}$

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,
∴函數(shù)x+$\frac{1}{n{x}^{n}}$=$\frac{x}{n}$+$\frac{x}{n}$+…+$\frac{x}{n}$+$\frac{1}{n{x}^{n}}$≥(n+1)×$\root{n+1}{\frac{x}{n}•\frac{x}{n}•…•\frac{x}{n}•\frac{1}{n{x}^{n}}}$=$\frac{n+1}{n}$,當(dāng)且僅當(dāng)x=1時(shí)取等號.
∴函數(shù)x+$\frac{1}{n{x}^{n}}$在正半實(shí)軸上的最小值是$\frac{n+1}{n}$.
故選:C.

點(diǎn)評 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=[x]-x(函數(shù)y=[x]的函數(shù)值表示不超過x的最大整數(shù),如([-3.6]=-4,[2.1]=2),設(shè)函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)+lgx(x>0)}\\{f(x)-sinx(-2π<x<0)}\end{array}\right.$,則函數(shù)y=g(x)的零點(diǎn)的個(gè)數(shù)為( 。
A.11B.10C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知整數(shù)對按如圖規(guī)律排成,照此規(guī)律,則第68個(gè)數(shù)對是(2,11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線l1:mx-y=0與直線l2:x-my+4=0互相平行,則實(shí)數(shù)m的值為( 。
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某同學(xué)從家里騎車一路勻速行駛到學(xué)校,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間,下列函數(shù)的圖象最能符合上述情況的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算(式中字母均正):
(1)(3${a}^{\frac{2}{3}}$$^{\frac{1}{2}}$)(-8${a}^{\frac{1}{2}}$$^{\frac{1}{3}}$)÷(-6${a}^{\frac{1}{6}}$$^{\frac{5}{6}}$)
(2)(${m}^{\frac{1}{4}}$${n}^{\frac{3}{8}}$)16
(3)$\frac{{a}^{3}}{\sqrt{a}•\root{3}{{a}^{4}}}$
(4)(2m2${n}^{-\frac{3}{5}}$)10÷(-${m}^{\frac{1}{2}}$n-36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a=$\frac{sin(kπ+α)}{sinα}+\frac{cos(kπ+α)}{cosα}$(k∈Z),則a的值構(gòu)成的集合為{2,-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,直線l1:3x+4y-15=0,l2經(jīng)過點(diǎn)O且與l1垂直.
(1)求直線l2的方程;
(2)設(shè)l1、l2、x軸兩兩相交的交點(diǎn)為A、B、C,試求△ABC內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)正實(shí)數(shù)x,y滿足xy=$\frac{x-9y}{x+y}$,則y的最大值是$\sqrt{10}$-3.

查看答案和解析>>

同步練習(xí)冊答案