5.若復(fù)數(shù)z滿足3-i=(z+1)i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$的虛部為( 。
A.3B.3iC.-3D.-3i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)與虛部的定義即可得出.

解答 解:∵3-i=(z+1)i,∴-i(3-i)=-i•i(z+1),
∴z=-3i-1-1=-2-3i
則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=-2+3i的虛部為3.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)與虛部的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an>0,${a_n}•{S_n}={({\frac{1}{4}})^n}({n∈{N^*}})$
(1)若bn=1+log2(Sn•an),求數(shù)列{bn}的前n項(xiàng)和Tn
(2)若0<θn<$\frac{π}{2}$,2n•an=tanθn,求證:數(shù)列{θn}為等比數(shù)列,并求出其通項(xiàng)公式;
(3)記${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+|{{a_3}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}$|,若對(duì)任意的n∈N*,cn≥m恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx+mx(m∈R)的圖象在點(diǎn)(1,f(1))處的斜率為2.
(1)求實(shí)數(shù)m的值;
(2)設(shè)g(x)=$\frac{f(x)-x}{x-1}$,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{6}}{2}$),其左、右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓E的方程;
(2)若A、B分別為橢圓E的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足MB⊥AB,且MA交橢圓E于點(diǎn)P.
(i)求證:$\overrightarrow{OP}$•$\overrightarrow{OM}$為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問:直線MQ是否過定點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀,樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為( 。
A.780B.680C.618D.460

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.方程$\sqrt{3}$sinx=cosx的解集為$\{x|x=kπ+\frac{π}{6},k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.3B.$\sqrt{3}$C.$2-\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.市積極倡導(dǎo)學(xué)生課外讀優(yōu)秀書籍活動(dòng),從參加此活動(dòng)同學(xué)中,抽取60名同學(xué)在2015年3月讀書活動(dòng)月的課外讀書時(shí)間(分鐘,均成整數(shù))分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)六組后,得到頻率分布直方圖(如圖),回答下列問題.
(Ⅰ)從頻率分布直方圖中,估計(jì)本次課外課優(yōu)秀書籍活動(dòng)時(shí)間的中位數(shù);
(Ⅱ)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人課外讀書時(shí)間之差的絕對(duì)值大于10(分鐘)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)全集為U=R,且S={x|x≥1},T={x|x≤3},∁U(S∩T)=(  )
A.(-∞,3]B.[1,+∞)C.(-∞,1)∪[3,+∞)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案