已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,數(shù)列{bn}中,b1=1,bn+1=2bn+1.
(1)求a1以及an
(2)求證:數(shù)列{bn+1}為等比數(shù)列,并求出bn
(3)設(shè)cn=an•log2(bn+1),求數(shù)列{cn}的前n項(xiàng)和Tn
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得a1=2,an+1=Sn+1-Sn=2an+1-2an,從而{an}是以2為公比的等比數(shù)列,由此能求出an=2n
(2)由已知得bn+1+1=2(bn+1),b1+1=2,從而能證明{bn+1}是以2為首項(xiàng),以2為公比的等比數(shù)列,由此能求出bn=2n-1.
(3)由cn=an•log2(bn+1)=2n•n,利用錯(cuò)位相減法能求出數(shù)列{cn}的前n項(xiàng)和Tn
解答: 解:(1)∵數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,
∴a1=S1=2a1-2=,解得a1=2,
∴Sn=2an-2,
Sn+1=2an+1-2
an+1=Sn+1-Sn=2an+1-2an,
an+1=2an,
an+1
an
=2,
∴{an}是以2為公比的等比數(shù)列,
an=2n
(2)∵數(shù)列{bn}中,b1=1,bn+1=2bn+1,
∴bn+1+1=2(bn+1),
又b1+1=2,
∴{bn+1}是以2為首項(xiàng),以2為公比的等比數(shù)列,
∴bn+1=2n,bn=2n-1.
(3)cn=an•log2(bn+1)=2n•n,
∴Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+3•24+…+n•2n+1,②
∴①-②,得:
-Tn=2+22+23+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1

∴Tn=2-(n+1)•2n+1
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的證明,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的解析式為f(x)=
3x+5,x≤0
x+5,0<x≤1
-2x+8,x>1
,求f(
3
2
),f(
1
π
),f(-1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={1,2,3,4},B={2,4,7,8},C={0,1,3,4,5},則集合(A∪B)∩C等于(  )
A、{2,4}
B、{1,3,4}
C、{2,4,7,8}
D、{0,1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,|AB|=|AC|,頂點(diǎn)A為直線l:x-y+1=0與y軸交點(diǎn)且l平分∠A,若B(1,3),求:
(I)直線BC的方程;
(Ⅱ)計(jì)算△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將a,b都是整數(shù)的點(diǎn)(a,b)稱為整點(diǎn),若在圓x2+y2-6x+5=0內(nèi)的整點(diǎn)中任取一點(diǎn)M,則點(diǎn)M到直線2x+y-12=0的距離大于
5
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2ax+3-b(a>0)在[1,3]上有最大值5和最小值2,則a+2b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
(x-1)2+a的定義域和值域都是[1,b](b>1),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)P(Sn,an)在直線(3-m)x+2my-m-3=0(m∈N+,m≠3)上
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足b1=3,bn=
3
2
f(bn-1)(n∈N+,n≥2),求證:{
1
bn
}為等差數(shù)列,并求通項(xiàng)bn
(3)若m=1,Cn=
an
bn
,Tn為數(shù)列{Cn}的前n項(xiàng)和,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
|x|
x
+|x|的圖象如下圖所示,正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案