12.從一個棱長為1的正方體中切去一部分,得到一個幾何體,某三視圖如圖,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 由題意所給的幾何體的三視圖可得該幾何體的形狀如下圖所示:該幾何體是一棱長為1的正方體切去如圖所示的一角.

解答 解:由題意所給的幾何體的三視圖可得該幾何體的形狀如圖所示
該幾何體是一棱長為1的正方體切去如圖所示的一角,
∴剩余幾何體的體積等于正方體的體積減去截取的直三棱錐的體積,
∴V=1-$\frac{1}{3}$×$\frac{1}{2}×{1}^{2}×1$=$\frac{5}{6}$.
故選:B.

點評 本題考查了三視圖的應(yīng)用、空間幾何體的體積計算,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.遞增的等差數(shù)列{an}滿足:a1+a2+a3=12,a1a2a3=63,Sn是數(shù)列{an}的前n項和,則使Sn>2018的最小整數(shù)n的值為( 。
A.80B.84C.87D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.給定橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),稱圓心在原點O,半徑為$\sqrt{{a^2}+{b^2}}$的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為F($\sqrt{2}$,0),且其短軸上的一個端點到F的距離為$\sqrt{3}$.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)過點(1,0)作一條傾斜角為30°的直線與橢圓交于A,B兩點.若在橢圓上存在一點C滿足$\overrightarrow{OC}$=λ($\overrightarrow{OA}$+$\overrightarrow{OB}$),試求λ的值;
(3)點P是橢圓C的“準(zhǔn)圓”上的一個動點,過動點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示是某幾何體的三視圖,則它的體積為64+12π.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相鄰兩個對稱軸的距離為$\frac{π}{2}$,以下哪個區(qū)間是函數(shù)f(x)的單調(diào)減區(qū)間( 。
A.[-$\frac{π}{3}$,0]B.$[\frac{π}{12},\frac{7π}{12}]$C.[0,$\frac{π}{3}$]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=e|xex|,若函數(shù)y=[f(x)]2+bf(x)-2恰有三個不同的零點,則實數(shù)b的取值范圍是( 。
A.(2$\sqrt{2}$,+∞)B.(-1,2$\sqrt{2}$)C.(1,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖1,等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖2).

(1)求證:PB⊥DE;
(2)若PE⊥BE,PE=1,求點B到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),若tan(α+β)=2tanβ,則當(dāng)α取最大值時,tanβ=$\frac{\sqrt{2}}{2}$,tan2α=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若z(1-i)=2+i(i為虛數(shù)單位),則復(fù)數(shù)z=$\frac{1}{2}+\frac{3}{2}i$.

查看答案和解析>>

同步練習(xí)冊答案