【題目】已知橢圓的離心率,且經(jīng)過點,是拋物線上一點,過點作拋物線的切線,與橢圓交于兩點.

1)求橢圓的方程;

2)若直線平分弦,求的取值范圍.

【答案】1;(2.

【解析】

1)易得,結合橢圓的離心率及即可求出的值,進而可得橢圓的方程;

2)先根據(jù)題意得出切線的方程,然后將切線方程代入橢圓方程,最后利用根的判別式、根與系數(shù)的關系、函數(shù)的單調性求解即可.

1)由題意可知,,

,

所以,

所以橢圓的方程是

2)由題意可設,

因為,即,所以,

所以切線的方程是,即

將其代入橢圓方程得,

,即.①

,,則,

又直線平分弦,所以,

所以,即,②

將②代入①得,③

由②③得

,

,恒成立,

所以上單調遞減,

所以

所以,

解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,的中點.

1)求證:平面

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,當時,證明:

2)若當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,,分別從,中各取2個不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個數(shù)是________(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,點在曲線上,直線l過點且與OM垂直,垂足為P.

1)當時,求在直角坐標系下點坐標和l的方程;

2)當MC上運動且P在線段OM上時,求點P在極坐標系下的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中e是自然對數(shù)的底數(shù).

1)若曲線處的切線與曲線也相切.

①求實數(shù)a的值;

②求函數(shù)的單調區(qū)間;

2)設,求證:當時,恰好有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關于的方程的兩個實數(shù)根為,求證:

(2)當時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在微信上查詢到近十年全國高考報名人數(shù)、錄取人數(shù)和山東夏季高考報名人數(shù)的折線圖,其中年的錄取人數(shù)被遮擋了.他又查詢到近十年全國高考錄取率的散點圖,結合圖表中的信息判定下列說法正確的是(

A.全國高考報名人數(shù)逐年增加

B.年全國高考錄取率最高

C.年高考錄取人數(shù)約

D.年山東高考報名人數(shù)在全國的占比最小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為F,直線lC交于M,N兩點.

1)若l過點F,點M,N到直線y2的距離分別為d1,d2,且,求l的方程;

2)若點M的坐標為(01),直線m過點MC于另一點N′,當直線lm的斜率之和為2時,證明:直線NN′過定點.

查看答案和解析>>

同步練習冊答案