8.已知{an}成等差數(shù)列,d為公差,若?m,n∈N+,m≠n,使Sm=Sn,則Sm+n=0.(Sn為{an}的前n項(xiàng)和)類比上述結(jié)論:{bn}為等比數(shù)列,q為公比,若?m,n∈N+,m≠n,使Tm=Tn,則Tm+n=1(Tn為{bn}的前n項(xiàng)積).

分析 根據(jù)已知中等差數(shù)列的性質(zhì),類比推理,可得相關(guān)的等比數(shù)列的性質(zhì).

解答 解:由已知{an}成等差數(shù)列,d為公差,若?m,n∈N+,m≠n,使Sm=Sn,則Sm+n=0.(Sn為{an}的前n項(xiàng)和)
類比上述結(jié)論:{bn}為等比數(shù)列,q為公比,若?m,n∈N+,m≠n,使Tm=Tn,則Tm+n=1(Tn為{bn}的前n項(xiàng)積).
故答案為:Tm+n=1

點(diǎn)評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合P={1,2},集合Q={1,2,3},則集合P與Q的關(guān)系為( 。
A.P⊆QB.P∈QC.P?QD.P=Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.計算($\frac{1+i}{1-i}$)3007=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知R=2-2,P=($\frac{3}{2}$)3,Q=log${\;}_{\frac{1}{2}}$3,則P,Q,R的大小關(guān)系是( 。
A.P<Q<RB.Q<R<PC.Q<P<RD.R<Q<P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.計算log25•log53•log32的值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.f(x)為奇函數(shù),且x>0時,f(x)=x2-2x,則x<0時,f(x)=-x2+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)計算10cos270°+4sin360°+9tan0°+15cos0°
(2)化簡a2cos2π-b2sin$\frac{3π}{2}$+abcosπ-absin$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)在[a,b]上有定義,若對任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,2015]上具有性質(zhì) P.現(xiàn)給出如下命題:
①f(x)在[1,2015]上不可能為一次函數(shù);
②若f(1008)=1008,則f(x)+f(2016-x)≥2016;
③對任意x1,x2,x3,x4∈[1,2015],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)];
④函數(shù)f(x)在[1,$\sqrt{2015}$]上具有性質(zhì)P.
其中真命題的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2|x|-3a
(1)當(dāng)a=1時,在所給坐標(biāo)系中,畫出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個交點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案