已知f(
x
1+x
)=
3x-2
2x+1
,求f(x)的表達(dá)式.
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:
x
1+x
=t,再用t表示x,從而求f(t)的表達(dá)式,得出f(x)的表達(dá)式.
解答: 解:令
x
1+x
=t,則(1-x)t=x,
∴x=
t
1-t
,
∴f(t)=
3•
t
1-t
-2
2
t
1-t
+1
=
5t-2
t+1
,
∴f(x)=
5x-2
x+1
點(diǎn)評(píng):本題主要考查用換元法求函數(shù)的解析式,屬于低檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,f(1)=1.
(1)判斷f(x)的單調(diào)性;
(2)求f(x)在[-4,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線L經(jīng)過(guò)點(diǎn)(-1,2)且與直線y=
3
4
x
垂直,則直線L的方程是( 。
A、4x-3y=0
B、4x-3y+10=0
C、4x+3y-2=0
D、4x+3y-10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)>0(n∈N*),且f(2)=4,對(duì)任意n1、n2∈N*有f(n1+n2)=f(n1)+f(n2)恒成立,則猜想f(n)的一個(gè)表達(dá)式為( 。
A、f(n)=n2
B、f(n)=n+2
C、f(n)=2n
D、f(n)=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是
 

①若函數(shù)f(x),g(x)在R上均為增函數(shù),則函數(shù)f(x)+g(x)也為R上的增函數(shù);
②若函數(shù)f(x),g(x)在R上均為增函數(shù),則函數(shù)f(x)g(x)也為R上的增函數(shù);
③若函數(shù)f(x),g(x)在R上均為增函數(shù),則函數(shù)f(x)-g(x)也為R上的增函數(shù);
④若函數(shù)f(x)在區(qū)間M和N上均為增函數(shù),則函數(shù)f(x)在M∪N上也為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的奇函數(shù),g(x)是R上的偶函數(shù),且f(x)+g(x)=ex,則“a+b>0”是“f(a)+g(b)>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩直線y=x+2k與y=2x+k+1的交點(diǎn)P在圓x2+y2=4上,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α,β是方程x2-2mx+2-m2=0(m∈R)的兩個(gè)實(shí)根,則α22的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,已知a2+a8=2014,則a5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案