16.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)圖象的一部分.
(1)求出A,ω,φ的值;
(2)當(dāng)x∈(0,$\frac{π}{2}$)時(shí),求不等式f(x-$\frac{π}{6}$)>f2($\frac{x}{2}$-$\frac{π}{6}$)-2的解集.

分析 (1)根據(jù)三角函數(shù)的圖象求出A,ω,φ,即可確定函數(shù)的解析式;
(2)根據(jù)函數(shù)的表達(dá)式,將不等式進(jìn)行化簡(jiǎn),結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.

解答 解:(1)由函數(shù)的圖象知A=2,$\frac{T}{4}$=$\frac{π}{3}-\frac{π}{12}$=$\frac{π}{4}$
∴函數(shù)的周期T=π.
即 $\frac{2π}{ω}$=π,解得ω=2,
即f(x))=2sin(2x+φ),
由五點(diǎn)對(duì)應(yīng)法得$\frac{π}{12}$×2+φ=$\frac{π}{2}$,解得φ=$\frac{π}{3}$,
∴f(x))=2sin(2x+$\frac{π}{3}$).
即A=2,ω=2,φ=$\frac{π}{3}$.
(2)由f(x-$\frac{π}{6}$)>f2($\frac{x}{2}$-$\frac{π}{6}$)-2得2sin2x>4sin2x-2,
即sin2x+cos2x>0,即$\sqrt{2}$sin(2x+$\frac{π}{4}$)>0,
∵x∈(0,$\frac{π}{2}$),∴2x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{5π}{4}$),
∴$\frac{π}{4}$<2x+$\frac{π}{4}$<π,
解得0<x<$\frac{3π}{8}$,
即不等式的解集為(0,$\frac{3π}{8}$).

點(diǎn)評(píng) 本題主要考查三角函數(shù)解析式的求法以及三角不等式的求解,根據(jù)三角函數(shù)的圖象是解決本題的關(guān)鍵,要求熟練掌握三角函數(shù)的圖象和性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)n≥3,n∈N時(shí),對(duì)于集合M={1,2,3,…,n},集合M的所有含3個(gè)元素的子集分別表示為N1,N2,N3,…NM(n)-1,NM(n),其中M(n)表示集合M的含3個(gè)元素的子集的個(gè)數(shù).設(shè)pi為集合Ni中的最大元素,qi為集合Ni中的最小元素,1≤i≤M(n),記P=p1+p2+…+pM(n)-1+pM(n),Q=q1+q2+…qM(n)-1+qM(n)
(1)當(dāng)n=4時(shí),分別求M(4),P,Q;
(2)求證:P=3Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如表:
    xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)請(qǐng)求出表中的x1,x2,x3的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)將f(x)的圖象向右平移$\frac{2}{3}$個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,m](3<m<4)上的圖象的最高點(diǎn)和最低點(diǎn)分別為M,N,求向量$\overrightarrow{NM}$與$\overrightarrow{ON}$夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=cos2(x+$\frac{π}{2}$)的單調(diào)遞增區(qū)間(  )
A.(2kπ,2kπ+π)k∈ZB.(2kπ,2kπ+2π)k∈ZC.(kπ,kπ+$\frac{π}{2}$)k∈ZD.(kπ+$\frac{π}{2}$,kπ+π)k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知定義在R上的函數(shù)f(x),g(x)滿足$\frac{f(x)}{g(x)}$=ax,f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若有窮數(shù)列{$\frac{f(n)}{g(n)}$}(n∈N)的前n項(xiàng)和等于$\frac{63}{64}$,則n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=3+i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C的圓心在直線y=x-2上
(Ⅰ)若圓經(jīng)過A(3,-2)和B(0,-5)兩點(diǎn).
(i)求圓C的方程;
(ii)設(shè)圓C與y軸另一交點(diǎn)為P,直線l過點(diǎn)P且與圓C相切.設(shè)D是圓C上異于P,B的動(dòng)點(diǎn),直線BD與直線l交于點(diǎn)R.試判斷以PR為直徑的圓與直線CD的位置關(guān)系,并說明理由;
(Ⅱ)設(shè)點(diǎn)M(0,3),若圓C半徑為3,且圓C上存在點(diǎn)N,使|MN|=2|NO|,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC為直角三角形,AB是斜邊,三個(gè)頂點(diǎn)在平面α的同側(cè),△ABC在平面α內(nèi)的正投影為正△A′B′C′,且AA′=3,CC′=4,BB′=5,則△ABC的面積是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AB是圓O的直徑,C是半徑OB的中點(diǎn),D是OB延長(zhǎng)線上一點(diǎn),且BD=OB,直線MD與圓O相交于點(diǎn)M、T(不與A、B重合),DN與圓O相切于點(diǎn)N,連結(jié)MC,MB,OT.
(Ⅰ)求證:DT•DM=DO•DC;
(Ⅱ)若∠DOT=30°,求∠BMC.

查看答案和解析>>

同步練習(xí)冊(cè)答案