2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$若關(guān)于x的函數(shù)y=f2(x)-bf(x)+1有8個不同的零點,則實數(shù)b的取值范圍是(2,$\frac{17}{4}$].

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$的圖象,從而可得方程x2-bx+1=0有2個不同的正解,且在(0,4]上,從而解得.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$的圖象如右圖,
∵關(guān)于x的函數(shù)y=f2(x)-bf(x)+1有8個不同的零點,
∴方程x2-bx+1=0有2個不同的正解,且在(0,4]上;
∴$\left\{\begin{array}{l}{1>0}\\{\frac{2}>0}\\{△=^{2}-4>0}\\{16-4b+1≥0}\end{array}\right.$,
解得,2<b≤$\frac{17}{4}$;
故答案為:(2,$\frac{17}{4}$].

點評 本題考查了數(shù)形結(jié)合的思想應(yīng)用及分段函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$且目標函數(shù)z=ax+y僅在點(2,1)處取得最小值,則實數(shù)a的取值范圍是(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$f(x)=\left\{\begin{array}{l}{x^2}-2ax,x≥2\\ 4x-6,x<2\end{array}\right.$在定義域R上是增函數(shù),則a的取值范圍是$a≤\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x|2a-x|-a,a∈R.
(1)若a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知a>-1,討論函數(shù)f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.α是方程x+lgx=3的根,β是方程x+10x=3的根,則α+β=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$都是單位向量,且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow{c}$,則$\overrightarrow{a}$•$\overrightarrow{c}$=$\frac{1}{2}$.設(shè)$\overrightarrow{a}$與$\overrightarrow$夾角為θ,則θ=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=sin2x-2sinxcosx+5cos2x的最大值可以寫成m+$\sqrt{n}$的形式(m、n為正整數(shù)).則m+n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則關(guān)于x的不等式g(x)≤1的解是( 。
A.(-∞,e]B.(-∞,1]C.[0,e]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.tanx=-3,則$\frac{2sinx-cosx}{3sinx+2cosx}$=1.

查看答案和解析>>

同步練習(xí)冊答案