11.設(shè)g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則關(guān)于x的不等式g(x)≤1的解是( 。
A.(-∞,e]B.(-∞,1]C.[0,e]D.[0,1]

分析 結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),分類討論不等式g(x)≤1的解,綜合討論結(jié)果可得答案.

解答 解:當(dāng)x≤0時,解不等式g(x)=ex≤1得:x≤0;
當(dāng)x>0時,解不等式g(x)=lnx≤1得:0<x≤e;
綜上所述,不等式g(x)≤1的解集是:(-∞,e],
故選:A.

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),分類討論思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\vec a,\vec b$是夾角為60°的兩單位向量,向量$\vec c⊥\vec a,\vec c⊥\vec b$,且$|\vec c|=1$,$\vec x=2\vec a-\vec b+\vec c,\vec y=-\vec a+3\vec b-\vec c$,則$cos<\vec x,\vec y>$=$-\frac{{5\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$若關(guān)于x的函數(shù)y=f2(x)-bf(x)+1有8個不同的零點,則實數(shù)b的取值范圍是(2,$\frac{17}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若關(guān)于x的不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,則a的取值范圍是[-4,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.任取k∈[-1,1],直線L:y=kx+3與圓C:(x-2)2+(y-3)2=4相交于M、N兩點,則|MN|≥2$\sqrt{3}$的概率為 (  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$,$\overrightarrow{CF}$=$\frac{2}{3}$$\overrightarrow{CD}$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{EF}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=4,∠DAB=60°,分別求|$\overrightarrow{EF}$|和$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:f(x)=$\frac{x+1}{x+a}$在區(qū)間[2,+∞)上單調(diào)遞減;命題q:g(x)=loga(-x2-x+2)的單調(diào)遞增區(qū)間為[-$\frac{1}{2}$,1).若命題p∧q為真命題.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=4x+k•2-x,且f(1)=2.
(1)求k的值;
(2)若f(x)>22-x,求x的取值范圍;
(3)若f(x)>t•2x對任意的x∈(0,+∞)都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\frac{3}{2}$sin(ωx+φ)(ω>0)的圖象相鄰兩個最高點與最低點的距離為5,則ω=$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案