14.一個(gè)物體做直線運(yùn)動(dòng),位移s(單位:m)與時(shí)t(單位:s)之間的函數(shù)關(guān)系為s(t)=-2t2+8t則這一物體在t時(shí)刻的瞬時(shí)速度v(單位:m/s)與時(shí)刻t(單位:s)之間的函數(shù)關(guān)系為( 。
A.v(t)=-4t+8B.v(t)=4t-8C.v(t)=-8t+2D.v(t)=8t-2

分析 根據(jù)導(dǎo)數(shù)的定義及物體的瞬時(shí)速度的定義便有v(t)=s′(t),這樣即可找出正確選項(xiàng).

解答 解:s′(t)=-4t+8;
∴v(t)=-4t+8.
故選:A.

點(diǎn)評(píng) 考查導(dǎo)數(shù)的定義,以及物體的位移和瞬時(shí)速度的定義,導(dǎo)數(shù)的運(yùn)算法則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如果在一次實(shí)驗(yàn)中,測得數(shù)對(duì)(x,y)的四組數(shù)值分別是A(1,2),B(2,3),C(3,5),D(4,6).
(Ⅰ)試求y與x之間的回歸直線方程$\hat y=bx+a$;
(Ⅱ)用回歸直線方程預(yù)測x=5時(shí)的y值.
($b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,陰影部分為古建筑物保護(hù)群所在地,其形狀是以O(shè)1為圓心,半徑為1km的半圓面.公路l經(jīng)過點(diǎn)O,且與直徑OA垂直,現(xiàn)計(jì)劃修建一條與半圓相切的公路PQ(點(diǎn)P在直徑OA的延長線上,點(diǎn)Q在公路l上),T為切點(diǎn).
(1)按下列要求建立函數(shù)關(guān)系:
①設(shè)∠OPQ=α(rad),將△OPQ的面積S表示為α的函數(shù);
②設(shè)OQ=t(km),將△OPQ的面積S表示為t的函數(shù).
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系,求△OPQ的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanα=-$\frac{1}{3}$,且α是第四象限.
(1)若P為α角終邊上的一點(diǎn),寫出符合條件的一個(gè)P點(diǎn)坐標(biāo);
(2)求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=(x-t)2+(e2x-2t)2,x∈R,其中參數(shù)t∈R,則函數(shù)f(x)的最小值為(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=3,b=2,cosC=$\frac{3}{4}$.
(I)求sinA的值;
(Ⅱ)求tan(B+C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若10a=2,10b=3,則10a-2b=$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以下的人數(shù);
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對(duì)年級(jí)名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),
年級(jí)名次
是否近視
1~50951~1000
近視4132
不近視918
能否在犯錯(cuò)的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)={log_2}\frac{1-ax}{1+x}$是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)設(shè)函數(shù)g(x)=f(x)-log2(mx),是否存在非零實(shí)數(shù)m使得函數(shù)g(x)恰好有兩個(gè)零點(diǎn)?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案