6.“x>0”是“x≥0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:若“x>0”則“x≥0”成立,
當(dāng)x=0時(shí),滿足x≥0但x>0不成立,
即“x>0”是“x≥0”的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=2$\sqrt{3}$sinθ.
(I)求出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C的交點(diǎn)為A,B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,4),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow$(λ∈R)
(1)求|$\overrightarrow{c}$|最小時(shí)的λ
(2)求$\overrightarrow{c}$與$\overrightarrow{a}$的夾角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{\begin{array}{l}{\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}≤1}\\{|x|≤2}\end{array}\right.$則目標(biāo)函數(shù)z=3x+y的最大值為( 。
A.$\frac{16}{3}$B.6C.$\frac{20}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=$\frac{2\sqrt{2}}{\sqrt{5-3cos2θ}}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)曲線C1與曲線C2交于A,B兩點(diǎn),C1與x軸交于點(diǎn)P,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線方程y-3=$\sqrt{3}$(x-4),則這條直線的傾斜角是( 。
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知 3,m,12組成等比數(shù)列,則m的值為±6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}中,a7+a9=4,則a8的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a為實(shí)數(shù),i為虛數(shù)單位,且復(fù)數(shù)(a-2)+(a-4)i為純虛數(shù),則a的值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案