【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,且,求實(shí)數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為. (2)
【解析】
(1)對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;
(2)令,由,可得,利用分析法和放縮法的思想,通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求最值證得當(dāng)時(shí),對(duì)任意,都有即可.
(1)依題意,,,
令,即,解得,
故當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),,
故函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為,
(2)令,
由題意得,當(dāng)時(shí),,則有,
下面證當(dāng)時(shí),對(duì)任意,都有,
由于時(shí),,
所以當(dāng)時(shí),,
故只需證明對(duì)任意,都有,
令,則,
所以在上恒成立,
所以函數(shù)在上單調(diào)遞增,
所以當(dāng)時(shí),,即,
所以,則,
令,,則.
當(dāng)時(shí),,,
所以,即函數(shù)在上單調(diào)遞增,
所以當(dāng)時(shí),,
所以對(duì)任意,都有.
所以當(dāng)時(shí),對(duì)任意,都有,
故實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)證明:(i);
(ii)對(duì)任意,對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見(jiàn)下表.
質(zhì)量指標(biāo) | |||
頻數(shù) | |||
一年內(nèi)所需維護(hù)次數(shù) |
(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));
(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;
(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買(mǎi)該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買(mǎi)支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買(mǎi)該服務(wù),或者每件都不購(gòu)買(mǎi)該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買(mǎi)每件產(chǎn)品時(shí)是否值得購(gòu)買(mǎi)這項(xiàng)維護(hù)服務(wù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期. 一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計(jì) | |
50歲以上(含50歲) | |||
50歲以下 | 55 | ||
總計(jì) | 200 |
(3)以這1000名患者的潛伏期超過(guò)6天的頻率,代替該地區(qū)1名患者潛伏期超過(guò)6天發(fā)生的概率,每名患者的潛伏期是否超過(guò)6天相互獨(dú)立. 為了深入研究,該研究團(tuán)隊(duì)隨機(jī)調(diào)查了名患者,其中潛伏期超過(guò)6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線的右焦點(diǎn)作直線,且直線與雙曲線的一條漸近線垂直,垂足為,直線與另一條漸近線交于點(diǎn),已知為坐標(biāo)原點(diǎn),若的內(nèi)切圓的半徑為,則雙曲線的離心率為( )
A.B.C.D.或2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)已知,是否存在k使得點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)B(不同于點(diǎn)A)在橢圓C上?若存在求出此時(shí)直線l的方程,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,沿中位線DE折起后,點(diǎn)A對(duì)應(yīng)的位置為點(diǎn)P,.
(1)求證:平面平面DBCE;
(2)求證:平面平面PCE;
(3)求直線BP與平面PCE所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com