13.如圖,已知圓E:(x+$\sqrt{3}$)2+y2=16,點(diǎn)F($\sqrt{3}$,0),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(2)設(shè)直線l與(1)中軌跡Γ相交于A,B兩點(diǎn),直線AO,l,OB的斜率分別為k1,k,k2(其中k>0),若k1,k,k2恰好構(gòu)成公比不為1的等比數(shù)列,求k的值.

分析 (1)通過線段PF的垂直平分線和半徑PE相交于Q,利用橢圓的定義求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(2)通過設(shè)直線l的方程為:y=kx+m(其中k>0),A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓方程、利用韋達(dá)定理可知x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,△=16(1+4k2-m2)>0,利用k2=k1k2代入化簡計(jì)算即得結(jié)論.

解答 解:(1)連結(jié)QF,根據(jù)題意,|QP|=|QF|,
則|QE|+|QF|=|QE|+|QP|=4$>|EF|=2\sqrt{3}$,
故動(dòng)點(diǎn)Q的軌跡Γ是以E,F(xiàn)為焦點(diǎn),長軸長為4的橢圓.      
設(shè)其方程為$\frac{x^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$,可知a=2,$c=\sqrt{{a^2}-{b^2}}=\sqrt{3}$,則b=1,
所以點(diǎn)Q的軌跡Γ的方程為$\frac{x^2}{4}+{y^2}=1$.
(2)設(shè)直線l的方程為:y=kx+m(其中k>0),A(x1,y1),B(x2,y2),
將直線l的方程代入橢圓方程,消去y整理得:
(1+4k2)x2+8kmx+4m2-4=0,
∴x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,且△=16(1+4k2-m2)>0,
∵k1,k,k2恰好構(gòu)成公比不為1的等比數(shù)列,
∴k2=k1k2=$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$,
即k2•$\frac{4{m}^{2}-4}{1+4{k}^{2}}$=k2•$\frac{4{m}^{2}-4}{1+4{k}^{2}}$+km•(-$\frac{8km}{1+4{k}^{2}}$)+m2,
整理得:m2-4k2m2=0,
∵m≠0,
∴k=$\frac{1}{2}$或k=-$\frac{1}{2}$(舍).

點(diǎn)評(píng) 本題考查直線與圓錐曲線的關(guān)系,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}中,an>0且前n項(xiàng)和Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),則Sn=$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某商場今年的年銷售收益為b萬元,如果今后每年的年銷售量的增長率為5%.那么大約經(jīng)過多少年銷售收益將翻一番.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對(duì)實(shí)數(shù)列{an},若存在常數(shù)M>0,使得對(duì)任意的n∈N*,|an|≤M,(*),則稱數(shù)列{an}為有界數(shù)列,若M是使(*)成立的最小正常數(shù),則稱M是最佳上界,現(xiàn)定義:ak=$\frac{1}{{k}^{2}}$+$\frac{1}{{k}^{2}+1}$+…+$\frac{1}{(k+1)^{2}-1}$(k=1,2,…).
(1)比較a1,a2,a3的大小,并猜想數(shù)列{an}的單調(diào)性(不需證明);
(2)定義數(shù)列{an}的交替和為:Sn=a1-a2+a3-a4+…+(-1)n-1an,問:數(shù)列{Sn}是否為有界函數(shù)?證明你的結(jié)論;
(3)①(理科)證明:數(shù)列{nan}為有界數(shù)列,并求此數(shù)列的最佳上界M;
②(文科)證明:數(shù)列{nan}為有界數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,當(dāng)拋物線形拱橋的拱頂距水面2米時(shí),測得水面寬4米.若水面下降0.5米,則水面寬$2\sqrt{5}$米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,一船自西向東勻速航行,上午10時(shí)到達(dá)一座燈塔P的南偏西75°距燈塔60海里的M處,下午2時(shí)到達(dá)這座燈塔的東偏南45°的N處,則該船航行的速度為$\frac{15\sqrt{6}}{2}$海里/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$sin(π-α)=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,那么tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{3^x},x≤0}\end{array}}\right.$則$f(\frac{1}{4})$的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.互不相同的5盆菊花,其中2盆為白色,2盆為黃色,1盆為紅色,先要擺成一排,要求紅色菊花擺放在正中間,白色菊花不相鄰,黃色菊花也不相鄰,共有多少種擺放方法( 。
A.$A_5^5$B.$A_2^2$
C.$A_4^2A_2^2$D.$C_2^1C_2^1A_2^2A_2^2$

查看答案和解析>>

同步練習(xí)冊(cè)答案