A. | 銳角三角形 | B. | 等腰三角形 | C. | 鈍角三角形 | D. | 直角三角形 |
分析 先根據(jù)題設(shè)條件求得cosC的表達(dá)式,進(jìn)而利用余弦定理求得cosC的另一表達(dá)式,二者相等化簡整理求得b=c,進(jìn)而判斷出三角形為等腰三角形.
解答 解:∵a=2bcosC,
∴cosC=$\frac{a}{2b}$,
∵cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∴$\frac{a}{2b}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,化簡整理得b=c,
∴△ABC為等腰三角形.
故選:B.
點(diǎn)評 本題主要考查了解三角形的應(yīng)用和三角形形狀的判斷.解題的關(guān)鍵是利用了cosC這一橋梁完成了問題的轉(zhuǎn)化,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b-a+1 | B. | b(a-1) | C. | b-a-1 | D. | b(1-a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 14 | C. | $\sqrt{13}$ | D. | $\sqrt{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,都有$x_{\;}^2+2x+5≠0$ | B. | ?x∈R,都有$x_{\;}^2+2x+5=0$ | ||
C. | ?x0∈R,都有$x_0^2+2{x_0}+5≠0$ | D. | ?x∉R,都有$x_{\;}^2+2x+5≠0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\sqrt{x}$ | B. | $f(x)=\frac{1}{x}$ | C. | f(x)=ex | D. | f(x)=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com