11.命題“?x∈R,x2-2x+4≥0”的否定為?x∈R,x2-2x+4<0.

分析 利用全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以,命題“?x∈R,x2-2x+4≥0”的否定為:?x∈R,x2-2x+4<0.
故答案為:?x∈R,x2-2x+4<0.

點(diǎn)評 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中a1=1,nan=(n+1)an+1,則a2016=$\frac{1}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an},對于任意n∈N*,都有an=n2-bn,是否存在一個整數(shù)m,使得當(dāng)b<m時,數(shù)列{an}為遞增數(shù)列?這樣的整數(shù)是否唯一?是否存在最大的整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的三個角A,B,C所對的邊分別為a,b,c,且a2+b2-ab=c2,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(Ⅰ)解關(guān)于x的一元二次不等式x(x-2)-3>0;
(Ⅱ)解關(guān)于x的一元二次不等式(x-4)(x-2a)<0(其中a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)命題p:方程$\frac{x^2}{3-k}+\frac{y^2}{k-1}$=1表示雙曲線;命題q:方程y2=(k2-2k)x表示焦點(diǎn)在x軸的正半軸上的拋物線.
(1)若命題p為真,求實(shí)數(shù)k的取值范圍;
(2)若命題(?p)∧q是真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線x2=-$\frac{1}{2}$y的準(zhǔn)線方程是( 。
A.x=$\frac{1}{2}$B.x=$\frac{1}{8}$C.y=$\frac{1}{2}$D.y=$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大;
(2)設(shè)f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期為π,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)y=$\frac{sinx+1}{2sinx-1}$的值域.

查看答案和解析>>

同步練習(xí)冊答案